- 分布式电源对配电网故障定位的影响(Python代码实现)
创新优化代码学习
分布式python开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述分布式电源对配电网故障定位的影响研究一、分布式电源的特点及其对配电网的影响二、传统故障定位方法的局限性三、分布式电源接入后的故障定位改进方案四、未来研究方向五、结论2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的思想系
- 笔记-《A Survey of Large Language Models》- 尾声
L_serein
玩转LLM笔记语言模型人工智能
尾声:尾声:本综述是由我们研究团队在一次讨论会上计划的,我们旨在总结LLM的最新进展,为我们的团队成员提供一份高度可读性的报告。第一稿于2023年3月13日完成,我们的团队成员尽最大努力以相对客观、全面的方式囊括有关LLM的相关研究。接着,我们进行了多次细致的写作和内容修订。尽管我们付出了巨大的努力,但这份综述仍远非完美:我们可能会遗漏重要的参考文献或主题,也可能存在不严谨的表述或讨论。由于空间有
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.群居蜘蛛算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于群居蜘蛛算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局
- Selenium WebDriver自动化测试(扩展篇)--Jenkins持续集成
职说测试
seleniumjenkinsci/cdUI自动化测试web自动化测试
文章目录一、引言二、Jenkins简介三、安装部署Jenkins安装部署四、集成Git与Maven安装必要的插件配置Git配置Maven五、创建Job创建自由风格的项目配置源码管理配置构建触发器配置构建环境配置构建步骤配置Post-buildActions六、触发构建示例:GitHubWebhook触发构建七、封装通用方法示例:使用Groovy脚本创建Job八、总结参考文献一、引言持续集成(Con
- 文献管理详解-ChatGPT4o作答
部分分式
笔记
文献管理详解文献管理是学术研究中的重要环节,尤其是在撰写论文、报告或项目时,研究者往往需要处理大量的参考文献。一个科学高效的文献管理流程,能够显著提升研究工作的效率和质量。以下从文献管理的意义、基本流程、常用工具、技巧与策略以及常见问题等方面详细讲解文献管理。1.文献管理的意义1.1提高效率避免重复查找文献,节约时间。快速检索需要的文献和数据,尤其是在文献量较大的情况下。1.2提升写作质量在论文写
- Java 之LinkedList源码简单分析
REN_林森
#Java基础知识javaLinkedListList双向链表
LinkedList源码分析前言一、数据结构二、初始化三、添加元素四、添加元素到指定位置五、获取元素六、删除元素总结参考文献前言LinkedList是我们常用的一个容器,简单分析LinkedList的源码,可以更好的了解LinkedList容器,了解它的数据结构、初始化、添加元素是如何实现。一、数据结构LinkedList的底层是一个带头尾指针的双向链表,双向链表通过一个私有静态内部类来定义。pr
- 利用gensim生成词袋模型(基于频次和基于TF-IDF)
weixin_50291342
文本表示自然语言处理python机器学习
前言参考文献:胡盼盼编著.自然语言处理从入门到实战[M].中国铁道出版社,2020.最近在学习文本表示的一种最简单方式——词袋模型,书中给出了使用gensim生成词袋模型的代码,原代码就来自于这本书,我加了一些注释,方便理解代码。一、引入库fromgensim.modelsimportTfidfModelfromgensim.corporaimportDictionaryimportjieba二、
- 基于麻雀优化算法的路径优化问题(Matlab代码实现)
长安程序猿
算法matlab开发语言
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述1.引言2.麻雀搜索算法(SSA)原理3.改进策略4.实验与结果展示5.考虑几何约束条件的路径优化6.结论与展望2运行结果3参考文献4Matlab代码1概述路径规划是移动机器人技术研究领域中非常重要的部分。面对愈渐复杂的工作环境,传统的路径规划技术存在各种难以解决的问题
- 【Matlab算法】[特殊字符]基于人工势场的多机器人协同运动与避障算法研究(附MATLAB完整代码)
Albert_Lsk
MATLAB算法实现与应用matlab算法机器人人工智能开发语言算法应用避障算法
基于人工势场的多机器人协同运动与避障算法研究摘要1.引言2.方法说明2.1人工势场模型2.2运动控制流程3.核心函数解释3.1主循环结构3.2力计算函数4.实验设计4.1参数配置4.2测试场景5.结果分析5.1典型运动轨迹5.2性能指标6.总结与建议成果总结改进方向附录:完整MATLAB代码参考文献摘要本文提出了一种基于人工势场法的多机器人协同运动与避障算法,通过MATLAB实现仿真验证。算法通过
- 【数值分析】拉格朗日插值法Matlab代码+插值回归拟合介绍
Wthirteen
matlab
文章目录前言一、插值、拟合、回归介绍二、拉格朗日插值法三、代码编写1.方法一2.方法二3.方法三四、总结参考文献前言本文先是对插值、拟合、回归这三种看似相同的方法进行介绍与区分,其次详细介绍插值中的拉格朗日插值法,并采用三种思路方法编写其对应的Matlab代码,供大家思考。方法一采用多层循环进行编写,码量极小,易于复刻,但并未求出插值函数;方法二采用符号变量结合矩阵运算,完全按照拉格朗日插值法的思
- 基于二进制粒子群算法的背包问题求解- 附代码
智能算法研学社(Jack旭)
离散二进制智能优化算法智能优化算法应用算法python机器学习matlab数学建模
基于二进制粒子群算法的背包问题求解-附代码文章目录基于二进制粒子群算法的背包问题求解-附代码1.二进制粒子群算法2.背包问题3.实验结果4.参考文献5.Matlab摘要:本文主要介绍二进制粒子群算法,并用其对背包问题进行求解。1.二进制粒子群算法在PSO算法中,每个优化问题的解都是粒子在搜索空间中的位置,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。在搜
- 【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测
我的青春不太冷
androidopencv人工智能计算机视觉Python
文章目录AndroidOpenCV实战:霍夫圆检测实现沙盘交通灯智能识别引言:当计算机视觉遇见智慧交通霍夫圆检测原理剖析数学之美:参数空间转换关键参数解析Android实现全流程环境准备核心代码解析颜色识别策略性能优化技巧实验结果对比完整实现流程图Python实现霍夫圆检测Android实现霍夫圆检测Android实现霍夫圆检测(精简版本)扩展方向以及建议参考文献AndroidOpenCV实战:霍
- 自动驾驶数据集三剑客:nuScenes、nuImages 与 nuPlan 的技术矩阵与生态协同
数据与算法架构提升之路
#自动驾驶自动驾驶人工智能机器学习
目录1、引言2、主要内容2.1、定位对比:感知与规划的全维覆盖2.2、数据与技术特性对比2.3、技术协同:构建全栈研发生态2.4、应用场景与评估体系2.5、总结与展望3、参考文献1、引言随着自动驾驶技术向全栈化迈进,Motional团队构建了涵盖3D感知、2D检测及规划决策的数据集矩阵,为自动驾驶系统提供了从环境感知到行为决策的全链路支持。nuScenes:多模态3D感知的行业标杆nuImages
- 视频分析:基于目标检测(YOLO)实现走路看手机检测、玩手机检测、跌倒检测等
shiter
人工智能系统解决方案与技术架构音视频深度学习人工智能
文章大纲背景行为检测的定义与挑战视频分析数据集目标检测数据集自制数据集思路Kaggle数据集COCO数据集OpenImagesDatasetV7人类行为视频分析yolo进行行为分析的检测看手机行为检测--方法与数据集方法数据集跌倒行为检测--方法与数据集跌倒检测-数据集跌倒检测-目标检测跌倒检测-姿态估计参考文献与学习路径背景行为检测在自动驾驶、视频监控等领域的广阔应用前景使其成为了视频分析的研究
- 毕设题目:Matlab无人机飞行作业
海神之光
Matlab毕设系列matlab
1案例背景随着我国农业的快速发展,在工业生产中逐渐引入高科技设备。在防治病虫害的过程中,引入植保无人机进行飞行作业。2现成案例(代码+参考文献)1【轨迹跟踪】基于matlab无人机轨迹跟踪【含Matlab源码1152期】2【路径规划】基于matlab多种算法无人机路径规划【含Matlab源码1263期】3【路径规划】基于matlab任意架次植保无人机作业路径规划【含Matlab源码322期】4【路
- 《how linux work》A. 参考文献
linux
附录A.参考文献Abrahams,PaulW.,和BruceLarson,《UNIX快速入门指南》,第2版。波士顿:Addison-Wesley专业出版社,1995年。Aho,AlfredV.,BrianW.Kernighan,和PeterJ.Weinberger,《AWK编程语言》。波士顿:Addison-Wesley,1988年。Aho,AlfredV.,MonicaS.Lam,RaviSet
- Endnote20——使用记录
eagle_Annie
学习方法经验分享
Endnote20——使用记录文章目录Endnote20——使用记录前言使用的参考文献格式参考网址参考文献安装中英混排问题处理作者姓名不顶格、第2行不顶格前言记录一些Endnote20的坑和网址。调试Endnote20按这个来一遍就行。使用的参考文献格式Endnote20提供的GBT7714参考格式有两个,使用的是ChineseStdGBT7714(numeric)参考网址参考文献安装文件要保存到
- python+selenium+pytesseract识别图片验证码
Yu_摆摆
pythonselenium软件测试pythonselenium开发语言ocr
一、selenium截取验证码参考文献:利用selenium自动实现对验证码截图并保存importjsonfromioimportBytesIOimporttimefromtest.testBefore.testDriverimportdriverfromtest.util.test_pytesseractimportrecognizefromPILimportImageimportallurei
- RNN/LSTM/GRU 学习笔记
Curz酥
机器学习rnnlstmgru深度学习机器学习
文章目录RNN/LSTM/GRU一、RNN1、为何引入RNN?2、RNN的基本结构3、各种形式的RNN及其应用4、RNN的缺陷5、如何应对RNN的缺陷?6、BPTT和BP的区别二、LSTM1、LSTM简介2、LSTM如何缓解梯度消失与梯度爆炸?三、GRU四、参考文献RNN/LSTM/GRU一、RNN1、为何引入RNN?循环神经网络(RecurrentNeuralNetwork,RNN)是用来建模序
- 车-电-路网时空分布负荷预测研究(Matlab代码实现)
Ps.729
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述电动汽车作为交通工具和移动负荷的载体,其出行分布和路径规划会受到交通信息的影响,而充电需求和充电策略会影响电网经济性与安全运行,因此建立图1所示的路网-配电网-车网交互模型分析EV充电负荷的时空分布。在建立各个模型
- 车-电-路网时空分布负荷预测研究(Matlab代码实现)
创新优化代码学习
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述电动汽车作为交通工具和移动负荷的载体,其出行分布和路径规划会受到交通信息的影响,而充电需求和充电策略会影响电网经济性与安全运行,因此建立图1所示的路网-配电网-车网交互模型分析EV充电负荷的时空分布。在建立各个模型
- yolov5 实例分割:从原理、构建数据集到训练部署
外卖猿
AI实战yolov5实例分割c++部署opencv自定义数据集
yolov5实例分割:从原理、构建数据集到训练部署1.模型介绍1.1YOLOv5结构1.2YOLOv5推理时间2.构建数据集2.1使用labelme标注数据集2.2生成coco格式label2.3coco格式转yolo格式3.训练3.1整理数据集3.2修改配置文件3.3执行代码进行训练4.使用OpenCV进行c++部署5.使用openvino进行c++部署参考文献1.模型介绍1.1YOLOv5结构
- skywalking获取traceId(tid)的方式
野木香
skywalking获取traceId(tid)的方式```一,通过MDC不能获取到traceId,tid二,可以通过skywalking手动追踪API来获取参考文献:https://blog.csdn.net/jilo88/article/details/81355265步骤:1,引入依赖jar包org.apache.skywalkingapm-toolkit-trace6.5.02,方法调用i
- 【Mamba之模型训练系列(四)】将 mamba 扩展到多模态大型语言模型,实现高效推理
愷创作者
Mamba及多模态模型训练系列语言模型人工智能自然语言处理
将mamba扩展到多模态大型语言模型,实现高效推理背景知识与研究动机Cobra模型设计视觉编码器DINOv2SigLIP投影器Mamba语言模型主干训练策略训练数据训练阶段预训练阶段多模态指令调整阶段微调策略训练细节训练策略的关键结论实验验证实验设置性能比较推理速度消融研究关键结论参考文献这篇文章介绍了一个名为Cobra的新型多模态大型语言模型(MLLM),它基于状态空间模型(SSM),旨在提高多
- 详解PASCAL VOC数据集及基于Python和PyTorch的下载、解析及可视化【目标检测+类别分割】
KRISNAT
机器学习数据集pythonpytorch目标检测
目录PASCALVOC数据集简介PASCALVOC各年份数据集摘要数据集下载通过下面官方提供的网址下载通过PyTorch的API下载数据集解析目标检测数据集物体分割数据集参考文献PASCALVOC数据集简介PASCALVOC数据集是计算机视觉领域中目标检测(objectdetection)任务和分割(segmentation)任务的基准数据集。PASCALVOC数据和比赛发源于由欧盟资助的PASC
- 基于STM32设计的盲人智能饮水机(221)
DS小龙哥
智能家居与物联网项目实战stm32嵌入式硬件单片机饮水机
文章目录一、前言1.1项目介绍【1】开发背景【2】项目实现的功能【3】项目硬件模块组成1.2设计思路【1】整体设计思路【2】整体构架1.3项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】摘要1.4开发工具的选择1.5系统框架图1.6系统功能总结1.7设备原理图1.8硬件实物图二、硬件选型2.1STM32开发板2.2PCB板2.3USB下载线2.4ESP8266WIFI2.5杜邦线(
- AI Native概念解析:人工智能的原生创新
勤劳兔码农
人工智能百度
AINative概念解析:人工智能的原生创新目录引言AINative概念的提出背景定义AINative的特点数据驱动自主学习实时决策可解释性AINative的应用领域医疗健康智能制造金融服务智慧城市教育科技AINative的技术架构数据层算法层应用层AINative的挑战与机遇技术挑战伦理和法律问题商业机遇AINative的未来发展趋势预测研究方向总结参考文献1.引言人工智能(AI)技术正在快速发
- Docker Hub 镜像 Pull 失败的解决方案
lijiachang030718
Dockerdocker容器运维程序人生经验分享笔记学习方法
目录引言一、问题二、原因三、解决方法四、参考文献引言在云原生技术火热的当下,Docker可谓是其基础,由于其简单以及方便性,让开发人员不必再为环境配置问题而伤脑筋,因为可将其看作一个虚拟机程序去理解。所以掌握好它可谓是很重要的事情,本文章将解决作者使用Docker时,遇到的一个基础问题,这也是困扰了很多人的问题,在此写篇文章分享给大家。一、问题在UbuntuLinux环境下,dockerpullu
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.20 傅里叶变换:从时域到频域的算法实现
精通代码大仙
numpypythonnumpypython算法
2.20傅里叶变换:从时域到频域的算法实现目录《傅里叶变换:从时域到频域的算法实现》2.20.1FFT算法原理2.20.2复数数组存储优化2.20.3频域滤波案例2.20.4音频处理案例2.20.5与CUFFT性能对比2.20.6总结2.20.7参考文献2.20.1FFT算法原理傅里叶变换(FourierTransform,FT)是一种将时域信号转换为频域信号的数学工具,而快速傅里叶变换(Fast
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc