标准差(Standard Deviation), 标准误差(Standard error),变异系数 (Coefficient of Variance )的区别与联系

   标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

   标准误差(Standard error)均方根误差(Root mean squared error)或标准误(Standard Error)标准误差是指在抽样试验(或重复的等精度测量)中,常用到样本平均数的标准差。标准差与标准误差,计算公式类似,但是是两个不同的概念。对一个总体多次抽样,每次样本大小都为n,那么每个样本都有自己的平均值,这些平均值的标准差叫做标准误差。

   变异系数(Coefficient of Variance),标准差与平均数的比值称为变异系数,记为C.V。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 简单来说就是:在表示离散程度上,标准差并不是全能的,当度量单位或平均数不同时,只能用变异系数了,它也是表示离散程度,是标准差和相应平均数的比值。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。

所以,标准差是针对特定的一组数据而言,看数据序列偏离均值的程度;而标准误差则是针对n组数据而言,看每次抽样的效果如何,可以理解为n组数据标准差的标准差。

你可能感兴趣的:(基本概念)