%matplotlib inline
import random
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf
sns.set_context("talk")
Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.
anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()
dataset | x | y |
---|---|---|
0 | 10 | 8.04 |
1 | 8 | 6.95 |
2 | 13 | 7.58 |
3 | 9 | 8.81 |
4 | 11 | 8.33 |
For each of the four datasets…
Using Seaborn, visualize all four datasets.
hint: use sns.FacetGrid combined with plt.scatter
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statistics as sta
import scipy.stats.stats as stats
anscombe = sns.load_dataset("anscombe")
print(anscombe) # 打印原数据
str = ['I', 'II', 'III', 'IV']
Xarray = []
Yarray = []
for i in range(0, 4):
array = anscombe.x[i * 11:i * 11 + 10].values # 获取x的值,并打印
Xarray.append(array)
print("Xarray in " + str[i] + ":", Xarray[i])
array = anscombe.y[i * 11:i * 11 + 10].values # 获取x的值,并打印
Yarray.append(array)
print("Yarray in " + str[i] + ":", Yarray[i])
for i in range(0, 4):
Xmean = np.mean(Xarray[i]) # 计算x的平均值,并打印
print("mean of x in " + str[i] + ":", Xmean)
Xvariance = sta.variance(Xarray[i]) # 计算x的方差,并打印
print("variance of x in " + str[i] + ":", Xvariance)
print(' ')
for i in range(0, 4):
Ymean = np.mean(Yarray[i]) # 计算y的平均值,并打印
print("mean of x in " + str[i] + ":", Ymean)
Yvariance = sta.variance(Yarray[i]) # 计算y的方差,并打印
print("variance of x in " + str[i] + ":", Yvariance)
print('')
for i in range(0, 4):
Cof = stats.pearsonr(Xarray[i], Yarray[i])[0]
print("correlation coefficient of " + str[i] + ":", Cof)
print('')
for i in range(0, 4):
X = sm.add_constant(Xarray[i])
model = sm.OLS(Yarray[i], X)
result = model.fit()
params = result.params
print("Dataset" + str[i] + ": y =", params[0], "+", params[1], "* x")
sns.set(style = 'whitegrid') # 数据可视化,散点图
g = sns.FacetGrid(anscombe, col = "dataset", hue = "dataset", size = 3)
g.map(plt.scatter, 'x', 'y')
plt.show()