- Dify实现图文混排的智能问答实践
一望无际的大草原
Dify高级应用工作总结Agent数据分析agent智能客服
最近在做类似于各大平台中广泛应用的智能客服,相当于基于各平台的用户操作手册,业务流程场景等文档资料,开发一个类似于智能客服的自动化问答应用。主要基于dify进行开发,但对数据有些特殊要求,之前大家做的都是基于文本的,结合大模型返回的结果主要也是文本信息,这种方式不够直观全面,也有信息丢失,同时,一般这些资料中都包含了大量的图文结合内容,很多问题的答复需要结合图像进行答复更加直观,因此对其进行简单的
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- 【算法设计与分析】(四)Strassen 矩阵
珹洺
#算法设计与分析算法矩阵线性代数
【算法设计与分析】(四)Strassen矩阵前言一、传统矩阵乘法二、Strassen矩阵乘法1.算法步骤2.效率提升三、实际应用场景四、算法的局限性与改进前言上一篇博客我们以生动形象的例子和清晰的步骤,为大家详细讲解了二分搜索技术与大整数乘法。接下来,这篇博客将带大家深入探索**Strassen矩阵**乘法,感受算法优化魅力。我的个人主页,欢迎来阅读我的其他文章https://blog.csdn.
- 4-AI-业务与MCP协议结合-MCPServer实战
小沛9
人工智能javaAI编程
一、介绍本章节会开发一个简单的MCP的服务。目前的步骤是先开发一个简单的MCP的SSE模式的server集成到大模型中。后面会演示stdio模式。注册到Nacos中(重点探索模式)、将HTTP接口配置成MCP的server。大概会从这几个方面进行演示。二、Server代码展示1、POM文件org.springframework.bootspring-boot-starter-actuatororg
- 道可云人工智能每日资讯|江苏首个机器人训练中心在苏州吴江启动
道可云
道可云人工智能人工智能机器人arDeepSeekxr百度
道可云人工智能&元宇宙每日简报(2025年6月26日)讯,今日人工智能&元宇宙新鲜事有:江苏首个机器人训练中心在苏州吴江启动近日,长三角一体化示范区智能机器人训练中心在东太湖度假区(太湖新城)正式启用,成为江苏省首个机器人智能训练中心。该中心占地1500平方米,设有8个训练场景和30个生产工位,涵盖智能制造、商业服务、特种应用三大领域,年产数据可超200万条,旨在加速机器人从实验室走向真实产业场景
- 【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习人工智能
【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.2深度学习模型2.2.1GlacierNet模型2.2.2DeepLabV3+模型欢迎铁子们点赞、关注、收藏!祝大
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- Java入门:从java后端到全栈七月
m0_56662269
程序员java后端面试
前言继续总结吧,没有面试就继续夯实自己的基础,前阵子的在面试过程中遇到的各种问题陆陆续续都会总结出来分享给大家,这次要说的也是面试中被问到的一个高频的问题,我当时其实没答好,因为很早之前是看过springboot启动过程的源码,但是时间隔得有点久了(两年多没用过springboot),所以当时也没答好。这次好好总结这部分知识。第一个暴击:Spring上一份Spring的手绘思维脑图(就像是个知识大
- 一建市政务实-第一章-市政公用工程技术-1.城镇道路工程-2.城镇道路路基施工
泽克
安全
2.城镇道路路基施工1.城镇道路路基施工技术1.路基施工特点与程序1.施工特点处于露天作业,受自然条件影响大,专业类型多,结构物多,各专业管线纵横交错,专业与社会之间的配合工作多,干扰多,施工变化多。交通压力、行车安全、构筑物等保护要求高;机械作业为主,人工配合为辅;专人指挥;采用流水或分段平衡作业方式。2.施工项目路基本身及有关的土(石)方、沿线的涵洞、挡土墙、路肩、边坡、各类管线3.基本流程准
- 第一章 城镇道路工程 1.5 安全质量控制
泽克
一建市政章节复习笔记
1.5城镇道路工程安全质量控制1.5.1城镇道路工程安全技术要点1.管线及邻近建筑物的保护1.管线的保护取得详细资料,设施管理单位向施工、监理进行详细交底研究确定拆迁或保护加固方案、形成文件施工前进行详探,人工开挖探沟,结构以下先施工。施工现场做好标识、施工图做好标志加固部位定期检查、维护。专人监护2.邻近建筑物的保护施工前调查,获取相关数据。采取合理的施工方案和加固措施设置沉降、位移观察点,2.
- JVM堆(Heap)详解与工作流程分析
empti_
Java基础jvmjava
JVM堆(Heap)详解与工作流程分析1.JVM堆核心架构1.1堆内存整体布局Java堆新生代YoungGeneration老年代OldGenerationEden区Survivor区S0Survivor区S1元空间Metaspace字符串常量池1.2各区域核心参数区域默认占比JVM参数存储内容Eden区80%新生代-XX:NewRatio新创建的对象Survivor区10%新生代×2-XX:Su
- 当语言模型”思考”时,它真的在推理吗?
qq_502428990
语言模型人工智能自然语言处理
最近,每当我看到ChatGPT一步步”推导”数学题,或是Claude条理分明地分析哲学问题时,总忍不住想起图灵测试那个古老的命题:我们是否又一次被表象迷惑了?这些看似严谨的推理过程,到底是一场精妙的模仿秀,还是真正智能的曙光?1.被误解的”思考者”走进任何科技论坛,你都能看到人们对GPT-4解题过程的惊叹:”看这一步一步的推导,它简直像人类一样在思考!”但作为一个长期观察语言模型的研究者,我不得不
- Android笔记(十五)ContentProvider源码浅析
jametang25
andorid
ContentProvider作为四大组件之一,由于业务上用到的地方不多,目前业务是系统界面,属于系统应用,最适合使用ContentProvider来进行少量数据存储,我们业务中涉及到的Settings.system和Settings.Secure等数据库,就是通过ContentProvider来封装、用ContentResolver来访问的//通过ContentResolver来访问Settin
- 软件测试面试前该准备些什么?
AIZHINAN
面试软件测试面试软件测试面经简历包装面试技巧
在软件测试面试前,充分的准备可以显著提升你的信心和表现。以下是需要重点关注的准备方向,分为技术能力、项目经验、面试技巧和软技能四个部分:一、技术能力准备基础理论软件测试基本概念:测试类型(功能、性能、安全、兼容性等)、测试阶段(单元测试、集成测试、系统测试等)。经典面试题:黑盒vs白盒测试的区别?什么是边界值分析、等价类划分?Bug的生命周期是怎样的?如何设计测试用例?(举例:测试一个登录页面)测
- 红黑树与2-3树:插入、删除操作的时间复杂度与实现机制比较
一键难忘
红黑树数据结构
本文收录于专栏:算法之翼红黑树与2-3树:插入、删除操作的时间复杂度与实现机制比较红黑树(Red-BlackTree)和2-3树(2-3Tree)是两种广泛用于平衡二叉查找树的自平衡树结构。它们在插入、删除和查找操作中的性能都表现良好,并且可以确保树的高度是对数级别,从而保证了高效的操作时间。本文将对红黑树和2-3树进行深入的比较,并结合代码实例说明它们的实现和应用。1.数据结构简介1.1红黑树简
- 学习三维动画心得
2501_92205961
开发语言青少年编程
在大二学年的三维动画设计学习进程中,我围绕3dsMax和Blender两大核心软件展开深入钻研,并在此基础上探索技术应用与创新。不仅熟练掌握了基础操作,还深入到代码编写与复杂技术问题解决领域,逐步构建起系统的三维动画设计知识与技能体系,以下是详细的学习总结。一、3dsMax的深度学习与技术实践(一)高级建模与脚本优化在3dsMax的学习中,基础建模掌握后,我开始挑战高级建模技术。利用NURBS建模
- 半导体FAB中的服务器硬件故障监控与预防全方案:从预警到零宕机实战
爱吃青菜的大力水手
服务器运维半导体FAB运维IT运维
服务器硬件故障监控与预防全方案:从预警到零宕机实战关键词:SMART监控RAID预警IPMI传感器性能基线PrometheusZabbix高可用架构一、硬件故障前的7大预警信号(附关联工具)故障类型关键指标监控工具预警阈值磁盘故障Reallocated_Sector_Countsmartctl+smartd>0立即告警Current_Pending_SectorPrometheus+NodeExp
- AI对话导出工具 (AI Chat Exporter)——支持 ChatGPT, Grok 和 Gemini 平台
ALGORITHM LOL
人工智能chatgpt
AI对话导出工具(AIChatExporter)轻松将AI对话导出为标准Markdown格式支持ChatGPT,Grok和Gemini平台相关代码已开源至Github欢迎Star✨功能特点多平台支持:同时支持ChatGPT,Grok和Gemini三大AI平台完整内容保留:精确导出所有对话内容,包括代码块、数学公式、链接和格式化文本标准Markdown格式:输出符合标准的Markdown格式,确保最
- 大模型本地部署,拥有属于自己的ChatGpt
小妖同学学AI
chatgpt
ChatGpt以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人的能力。不管用于文案撰写还是程序辅助开发都大大提高了我们的工作效率,但是其使用有一定的门槛,让我们大多数人都望而却步,今天我们利用ollama实现本地大模型的步骤,让我们轻松拥有自己的人工智能。Ollama作为一个轻量级的工具,可以帮助用户在本地运行这些大型语言模型,无需持续依赖云服务,既保护了数据隐私,又能减少网
- 左神算法之矩阵旋转90度
岳轩子
左神算法算法矩阵线性代数
目录旋转矩阵90度(原地操作)1.题目2.解释3.思路4.代码5.总结6.其他旋转矩阵90度(原地操作)1.题目旋转矩阵90度,且只能用有限的几个变量。比如下面的矩阵:12345678910111213141516转换结果为:139511410621511731612842.解释旋转矩阵90度是指将矩阵顺时针旋转90度。观察旋转前后的变化可以发现:原矩阵的第一行变为旋转后矩阵的最后一列原矩阵的第二
- 程序和进程和线程的区别是什么?
小白之歌
Java
程序和进程和线程的区别是什么?进程是操作系统资源分配的基本单位,线程是任务调度执行基本单位(CPU的基本调度单位),程序是静态的指令集合,而进程是运行中的指令集合。进程:程序的一次执行,答法1:进程间切换代价大,线程间切换代价小进程拥有资源多,线程拥有资源少多个线程共享进程的资源进程是分配资源的基本单位,而线程是独立运行和调度的基本单位。任意时刻,一个CPU只能运行一个进程,进程获得资源后进行分配
- 技术开发全流程管理:涵盖天线系统的仿真建模(HFSS/CST等)、原型设计、调试优化(网络分析仪/暗室测试)到量产导入(LDS工艺识别),需主导技术文档编写(设计规范/测试报告)。
百态老人
网络设计规范
以下是针对天线系统技术开发全流程管理的完整解析,涵盖仿真建模、原型设计、调试优化、量产导入及技术文档编写五大环节,结合行业实践与资料核心信息进行系统阐述:一、仿真建模(HFSS/CST)1.软件选择与算法差异HFSS:基于有限元法(FEM),擅长电小尺寸、窄带天线设计(如微带天线、滤波电路),可精确计算辐射方向图、增益、S参数等。其自适应网格技术确保高精度,但计算资源消耗大,不适于电大尺寸模型。C
- iOS 应用安全加固指南:通过 IPA 混淆与防破解技术实现全面防护
00后程序员张
httpudphttpswebsocket网络安全网络协议tcp/ip
在现代移动应用开发中,安全性已不再是一个可以忽视的领域。随着黑客技术的日益成熟以及用户对隐私保护的重视,开发者必须将安全性嵌入到应用的每一个开发环节中,而不仅仅是在开发的后期进行加固。尤其是对于那些涉及用户数据、支付信息等敏感内容的应用,确保应用的安全性是至关重要的。本文将介绍iOS应用开发中的安全实践,并结合具体的安全加固技术,如使用IpaGuard、Obfuscator-LLVM,从应用的设计
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- MiniMax - M1:开源大模型的革命性突破
开源大模型MiniMax-M1研究报告一、引言在人工智能技术飞速发展的当下,大模型领域的竞争愈发激烈。开源大模型以其开放性、可定制性和社区协作的优势,逐渐成为推动人工智能技术进步的重要力量。MiniMax-M1作为全球首个开源大规模混合架构的推理模型,一经发布便引起了广泛关注。它在长上下文处理、推理效率和成本控制等方面展现出了卓越的性能,为人工智能的发展带来了新的思路和方向。本文将对MiniMax
- AI摄像头动捕:精准量化八段锦动作质量,赋能传统功法习练
在追求动作标准度的竞技体育、舞蹈教学或运动康复领域,如何科学、客观、高效地评估动作质量一直是核心挑战。如今,AI摄像头动捕技术的成熟,正为这些领域带来突破性的解决方案,尤其在需要高度专注与准确性的八段锦、太极拳等传统健身功法领域中展现出巨大潜力。AI摄像头动捕系统,通过部署多组高帧率RGB摄像头,在空间中构建一个精密的三维捕捉场域。这种无穿戴动捕(或称无标记点动捕)的方式,让用户无需任何设备束缚人
- Scikit-learn:机器学习的「万能工具箱」
科技林总
DeepSeek学AI人工智能
——三行代码构建AI模型的全栈指南**###**一、诞生背景:让机器学习从实验室走向大众****2010年前的AI困境**:-学术界模型难以工程化-算法实现碎片化(MATLAB/C++主导)-企业应用门槛极高>**破局者**:DavidCournapeau发起*Scikit-learn*项目,**统一算法接口**+**Python简易语法**=机器学习民主化革命---###**二、设计哲学:一致性
- Edge-TTS在广电系统中的语音合成技术的创新应用
Edge-TTS在广电系统中的语音合成技术的创新应用作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。摘要随着人工智能技术的快速发展,文字转语音(Text-to-Speech,TTS)系统已成为多种应用的重要组成部分,尤其在广播电视领域。本文介绍了一种基于Edge-TTS大模型的文字转语音工具,该工具结合了现代文本处理和语
- Aop和Ioc有什么关系?(面试简洁版)
乞讨不是罪过
面试java职场和发展
AOP(面向切面编程)和IoC(控制反转)是Spring框架的两大核心,它们既独立又协作,共同实现松耦合、可扩展的架构设计。以下是它们的核心关系基础关系1.IoC是基石:Spring通过IoC容器(如ApplicationContext)统一管理所有Bean(包括普通业务Bean和AOP代理对象)。没有IoC,AOP无法自动生效。2.AOP是增强:AOP基于IoC管理的Bean,通过动态代理(JD
- 基于 Kintex UltraScale 系列 2 路 QSFP+40G 光纤 PCIe 数据传输卡 / 光纤适配器(5GByte/s 带宽KU060光纤 PCIe 数据传输卡)
F_white
数据中心视频与图像采集处理机器视觉
PCIE732是一款基于PCIE总线架构的高性能数据传输卡,板卡具有1个PCIex8主机接口、2个QSFP+40G光纤接口,可以实现2路QSFP+40G光纤的数据实时采集、传输。板卡采用Xilinx的高性能KintexUltraScale系列FPGA作为实时处理器,板载2组独立的72位DDR4SDRAM大容量缓存。板卡具有1个RJ45千兆以太网口以及若干IO信号。一般应用于基于服务器的雷
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理