什么是启发式算法(heuristic algorithm)?

在笔者的心目中,术语就是个大坑,像面向对象的封装、集成和多态,不知道过了多久才习惯,股票的多头空头头寸也是如此。所以啊,把鬼都听不懂的术语翻译成人话直观地理解,然后跟别人说鬼话,大概是professional的必经之路。

现在轮到启发式算法了。

heuristic的解释:
1. relating to or using a method of teaching that encourages learners to discover solutions for themselves
2. using or arrived at by a process of trial and error rather than set rules
3. describes a computer program that modifies itself in response to the user, e.g. a spell checker
4. helpful procedure for arriving at a solution but not necessarily a proof

百度百科:
启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。现阶段,启发式算法以仿自然体算法为主,主要有蚁群算法、模拟退火法、神经网络等。

其他一些不错的说法:

启发式算法就是例如遗传算法,模拟退火,各种群算法,蚁群,鱼群,粒子群,人工神经网络等模仿自然界或生命体行为模式的算法,一般又称人工智能算法或全局优化算法。

启发式算法是指具有自学习功能,可利用部分信息对计算产生推理的算法。

A heuristic is the art and science of discovery and invention. The word comes from the same Greek root as “eureka” meaning “to find”. A heuristic for a given problem is a way of directing your attention fruitfully to a solution. It is different from an algorithm in that a heuristic merely serves as a rule-of-thumb or guideline, as opposed to an invariant procedure. Heuristics may not always achieve the desired outcome, but can be extremely valuable to problem-solving processes. Good heuristics can dramatically reduce the time required to solve a problem by eliminating the need to consider unlikely possibilities or irrelevant states. As such, it is particularly useful to those in the process of discovery and the are constantly rethinking their strategies in the face of a stubborn unknown.

启发式方法(试探法)是一种帮你寻求答案的技术,但它给出的答案是具有偶然性的(subject to chance),因为启发式方法仅仅告诉你该如何去找,而没有告诉你要找什么。它并不告诉你该如何直接从A 点到达B 点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30 天无效退款的保证。

驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至Puyallup;从South Hill Mall 出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是North Cedar 路714 号。
用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。

算法和启发式方法之间的差别很微妙,两个术语的意思也有一些重叠。就本书的目的而言,它们之间的差别就在于其距离最终解决办法的间接程度:算法直接给你解决问题的指导,而启发式方法则告诉你该如何发现这些指导信息,或者至少到哪里去寻找它们。

从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。

你可能感兴趣的:(机器学习算法)