基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化

首先看数据集路径:

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第1张图片

cats和dogs存放的就是各种大小的猫狗图片。

读取数据集代码:

import os
import matplotlib.pyplot as plt
"""
读取数据 返回数据的文件夹名字,和具体的猫狗的路径
"""
def read_data():
#提取数据集的样本路径
    base_dir='./data/cats_and_dogs_filtered'
    train_dir=os.path.join(base_dir,'train')
    validation_dir=os.path.join(base_dir,'validation')

    train_cats_dir=os.path.join(train_dir,'cats')
    train_dogs_dir=os.path.join(train_dir,'dogs')

    validation_cats_dir=os.path.join(validation_dir,'cats')
    validation_dogs_dir=os.path.join(validation_dir,'dogs')

    #对狗和猫的图片名称提取存放在列表里
    train_cat_fnames=os.listdir(train_cats_dir)
    train_cat_fnames.sort()
    print(train_cat_fnames[:10])
    train_dog_fnames=os.listdir(train_dogs_dir)
    train_dog_fnames.sort()
    print(train_dog_fnames[:10])
    # print(len(os.listdir(train_cats_dir)))


    # pic_index=0
    # plt.figure(figsize=(16,16))#设置画布大小为1600×1600
    # # fig=plt.gcf()
    # # fig.set_size_inches(ncols*4,nrows*4)
    # pic_index+=8
    #提取数据集具体的路径进入列表中
    next_cat_pix=[os.path.join(train_cats_dir,fname)
                  for fname in train_cat_fnames]
    #print(next_cat_pix)
    next_dog_pix=[os.path.join(train_dogs_dir,fname)
                  for fname in train_dog_fnames]
    return train_dir,validation_dir,next_cat_pix,next_dog_pix

def test():
    train_dir,validation_dir,next_cat_pix,next_dog_pix=read_data()
    print(train_dir)
    print(validation_dir)
    print(next_dog_pix)
    nrows = 4
    ncols = 4
    for i,img_path in enumerate(next_cat_pix+next_dog_pix):
        if i<16:
            sp=plt.subplot(nrows,ncols,i+1)
            sp.axis('off')#去除轴
            img=plt.imread(img_path)#读取图片
            plt.imshow(img)
    plt.show()


if __name__ == '__main__':
    # read_data()
    test()

打印结果:打印16张照片看看

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第2张图片

模型代码:

import numpy as np
import matplotlib.pyplot as plt
import random
import data_read
import tensorflow as tf
from keras.models import Model
from keras import  layers,optimizers
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
"""
获得所需求的图片--未进行图像增强
"""
def data_deal():
    # 获取数据的路径
    train_dir, validation_dir, next_cat_pix, next_dog_pix = data_read.read_data()
    #像素缩小到0~1
    train_datagen=ImageDataGenerator(rescale=1./255)
    test_datagen=ImageDataGenerator(rescale=1./255)
    #从文件夹获取所需要求的图片
    #优点 能够根据train下的两个文件夹二分类
    train_generator=train_datagen.flow_from_directory(
          train_dir,
          target_size=(150,150),
          batch_size=20,
          class_mode='binary')
    test_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')
    # print(train_generator)
    # print(test_generator.samples)
    return train_generator,test_generator
"""
定义模型
"""
def define_model():
#定义TF backend session
    # tf_config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
    # K.set_session(tf.Session(config=tf_config))
    #卷积过程 三层卷积
    img_input=layers.Input(shape=(150,150,3))
    x=layers.Conv2D(filters=16,kernel_size=(3,3),activation='relu')(img_input)
    print('第一次卷积尺寸={}'.format(x.shape))
    x=layers.MaxPooling2D(strides=(2,2))(x)
    print('第一次池化尺寸={}'.format(x.shape))
    x=layers.Conv2D(filters=32,kernel_size=(3,3),activation='relu')(x)
    print('第二次卷积尺寸={}'.format(x.shape))
    x=layers.MaxPooling2D(strides=(2,2))(x)
    print('第二次池化尺寸={}'.format(x.shape))
    x=layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu')(x)
    print('第三次卷积尺寸={}'.format(x.shape))
    x=layers.MaxPooling2D(strides=(2,2))(x)
    print('第三次池化尺寸={}'.format(x.shape))
    #全连接层
    x=layers.Flatten()(x)
    x=layers.Dense(512,activation='relu')(x)
    output=layers.Dense(1,activation='sigmoid')(x)
    model=Model(inputs=img_input,outputs=output,name='CAT_DOG_Model')
    return img_input,model
"""
训练模型
"""
def train_model():
    #构建网络模型
    img_input,model=define_model()
    #编译模型
    model.compile(optimizer=optimizers.RMSprop(lr=0.001),loss='binary_crossentropy',metrics=['accuracy'])
    train_generator,test_generator=data_deal()
    #verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
    print('=============开始训练模型==================')
    #训练模型
    history=model.fit_generator(
        train_generator,
        steps_per_epoch=100,#2000 images=batch_szie*steps
        epochs=10,
        validation_data=test_generator,
        validation_steps=50,#1000=20*50
        verbose=2)
    # 模型参数个数
    model = model.summary()
    # print(model)
    #精度
    acc=history.history['acc']
    val_acc=history.history['val_acc']
    print('训练集精度={}'.format(acc))
    print('验证集精度={}'.format(val_acc))
    #损失
    loss=history.history['loss']
    val_loss=history.history['val_loss']
    print('训练集损失值={}'.format(loss))
    print('验证集损失值={}'.format(val_loss))
    #epochs的数量
    epochs=range(len(acc))

    plt.plot(epochs,acc)
    plt.plot(epochs, val_acc)
    plt.title('training and validation accuracy')

    plt.figure()
    plt.plot(epochs, loss)
    plt.plot(epochs, val_loss)
    plt.title('training and validation loss')
    plt.show()

"""
查看卷积层生成的图
"""
def visualize_model():
    img_input,model=define_model()
    # print(model.layers)
    #存储每一层的tensor的shape 类型等
    successive_outputs=[layer.output for layer in model.layers]
    print('查看输出={}'.format(successive_outputs))
    visualization_model=Model(img_input,successive_outputs)
    #从训练集例返回图片的地址
    train_dir, validation_dir, cat_img_files,dog_img_files = data_read.read_data()
    #返回随机一张图片的地址
    img_path=random.choice(cat_img_files+dog_img_files)
    img=load_img(img_path,target_size=(150,150))
    x=img_to_array(img)
    #print(x.shape)
    #变成(1,150,150,3)
    x=x.reshape((1,)+x.shape)
    x/=255
    #(samples,150,150,3) 存储10层的信息
    successive_feature_maps=visualization_model.predict(x)
    print('该模型结构层数={}'.format(len(successive_feature_maps)))
    for i in range(len(successive_feature_maps)):
        print('第{}层shape={}'.format(i,successive_feature_maps[i].shape))

    layer_names=[layer.name for layer in model.layers]
    #zip 打包成一个个元组以列表形式返回[(),()]
    #并且遍历元组里的内容
    images_per_row = 16
    for layer_name,feature_map in zip(layer_names,successive_feature_maps):
        if len(feature_map.shape)==4:#只查看卷积层
            n_features=feature_map.shape[-1]#(1,150,150,3)取3 取出深度
            size=feature_map.shape[1]##(1,150,150,3)取150  尺寸大小
            n_cols = n_features // images_per_row
            display_grid=np.zeros((size*n_cols,size*images_per_row))
            for col in range(n_cols):
                for row in range(images_per_row):
                    x=feature_map[0,:,:,col*images_per_row+row]
                    x-=x.mean()
                    x/=(x.std()+0.001)
                    x*=64
                    x+=128
                    #限定x的值大小 小于0 则为0  大于255则为255
                    x=np.clip(x,0,255).astype('uint8')
                    display_grid[col*size:(col+1)*size,row*size:(row+1)*size]=x

                #第一种显示方法
                scale=1./size
                plt.figure(figsize=(scale*display_grid.shape[1],
                                    scale*display_grid.shape[0]))
                plt.title(layer_name)
                plt.grid(False)
                plt.imshow(display_grid, aspect='auto', cmap='viridis')
                plt.savefig('{}+{}.jpg'.format(layer_name,col))

                #第二种显示方法
                # sp = plt.subplot(4, 4, i + 1)
                # sp.axis('off')  # 去除轴
                # plt.imshow(display_grid[:,i*size:(i+1)*size],aspect='auto',cmap='viridis')
        plt.show()
if __name__ == '__main__':
    train_model()
    #visualize_model()
    # data_deal()

训练10个epoch打印结果:

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第3张图片

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第4张图片

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第5张图片

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第6张图片

可看出训练精度一直上升,损失值一直减少,测试精度上升一定就稳定了,且损失值一直上升,因为发生了过拟合,下一步就要解决过拟合。

调用卷积层可视化函数,打印

第一次卷积尺寸=(?, 148, 148, 16)
第一次池化尺寸=(?, 74, 74, 16)
第二次卷积尺寸=(?, 72, 72, 32)
第二次池化尺寸=(?, 36, 36, 32)
第三次卷积尺寸=(?, 34, 34, 64)
第三次池化尺寸=(?, 17, 17, 64)

的卷积图,如下:

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第7张图片

基于Keras的卷积神经网络用于猫狗分类(未进行数据增强)+卷积层可视化_第8张图片

可发现越到后面越模糊,因为提取了高级特征,具有泛化能力。

你可能感兴趣的:(keras)