序列化在分布式系统中扮演着重要的角色,优化Spark程序时,首当其冲的就是对序列化方式的优化。Spark为使用者提供两种序列化方式:
Java serialization: 默认的序列化方式。
Kryo serialization: 相较于 Java serialization 的方式,速度更快,空间占用更小,但并不支持所有的序列化格式,同时使用的时候需要注册class。spark-sql中默认使用的是kyro的序列化方式。
下文将会讲解kryo的使用方式并对比性能。
可以在spark-default.conf
设置全局参数,也可以代码中初始化时对SparkConf设置 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
,该参数会同时作用于机器之间数据的shuffle操作以及序列化rdd到磁盘,内存。
Spark不将Kyro设置成默认的序列化方式是因为它需要对类进行注册,官方强烈建议在一些网络数据传输很大的应用中使用kyro序列化。
val conf = new SparkConf()
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.registerKryoClasses(Array(classOf[MyClass1],classOf[MyClass2]))
val sc = new SparkContext(conf)
如果你要序列化的对象比较大,可以增加参数spark.kryoserializer.buffer
所设置的值。
如果你没有注册需要序列化的class,Kyro依然可以照常工作,但会存储每个对象的全类名(full class name),这样的使用方式往往比默认的 Java serialization 还要浪费更多的空间。
可以设置 spark.kryo.registrationRequired
参数为 true
,使用kyro时如果在应用中有类没有进行注册则会报错:
如上这个错误需要添加
sparkConf.registerKryoClasses(
Array(classOf[scala.collection.mutable.WrappedArray.ofRef[_]],
classOf[MyClass]))
下面的 demo 将会演示不同方式的序列化对空间占用的情况。
case class Info(name: String ,age: Int,gender: String,addr: String)
object KyroTest {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[2]").setAppName("KyroTest")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.registerKryoClasses(Array(classOf[Info]))
val sc = new SparkContext(conf)
val arr = new ArrayBuffer[Info]()
val nameArr = Array[String]("lsw","yyy","lss")
val genderArr = Array[String]("male","female")
val addressArr = Array[String]("beijing","shanghai","shengzhen","wenzhou","hangzhou")
for(i <- 1 to 1000000){
val name = nameArr(Random.nextInt(3))
val age = Random.nextInt(100)
val gender = genderArr(Random.nextInt(2))
val address = addressArr(Random.nextInt(5))
arr.+=(Info(name,age,gender,address))
}
val rdd = sc.parallelize(arr)
//序列化的方式将rdd存到内存
rdd.persist(StorageLevel.MEMORY_ONLY_SER)
rdd.count()
}
}
可以在web ui中看到缓存的rdd大小:
序列化方式 | 是否注册 | 空间占用 |
---|---|---|
kyro | 是 | 21.1 MB |
kyro | 否 | 38.3 MB |
Java | 无 | 25.1 MB |