keras 实现简单卷积神经网络 和 可视化

    from keras.preprocessing.image import ImageDataGenerator
    from keras.models import Sequential
    from keras.layers import Conv2D, MaxPooling2D
    from keras.layers import Activation, Dropout, Flatten, Dense
    from keras import backend as K
    from keras import regularizers
    from keras.utils import plot_model
    from keras.callbacks import TensorBoard


# dimensions of our images.
img_width, img_height = 113, 113

train_data_dir = 'data2/train'
validation_data_dir = 'data2/validation'
nb_train_samples = 1035
nb_validation_samples = 176
epochs = 3
batch_size = 16

if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
else:
    input_shape = (img_width, img_height, 3)

model = Sequential()



model.add(Conv2D(16, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.6))
model.add(Dense(1, input_dim=64,
                kernel_regularizer=regularizers.l2(0.01),
                activity_regularizer=regularizers.l1(0.01)))
#model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

plot_model(model, to_file='model.png')

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

history = model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    callbacks=[TensorBoard(log_dir='./tmp/log')],
    validation_data=validation_generator,
    validation_steps=nb_validation_samples // batch_size)
model.save('model_weight.h5')
#model.save_weights('first_try.h5')


#matplotlib可视化 ,也可tensorboard可视化
import matplotlib.pyplot as plt
fig = plt.figure()#新建一张图
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.show()
fig.savefig('VGG16'+'test'+'acc.png')
fig = plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()
fig.savefig('VGG16'+'test2'+'loss.png')

你可能感兴趣的:(keras 实现简单卷积神经网络 和 可视化)