1989年,当万维网出现之后,给我们带来了第四次传播革命,互联网以其海量的空间、互动的方式,使得信息数量急剧增加,根据ZDNET的数据显示,2013 年中国产生的数据总量超过0.8ZB,2 倍于2012 年,相当于2009 年全球的数据总量,而预计到2020年,中国产生的数据总量将达到16ZB。尤其在“摩尔定律”使得存储能力极速提升、社交媒体的出现使得生产数据的能力高速发展、新数据挖掘技术使得数据分析能力大大扩展三大动力的推动下,全世界进入了大数据时代,2013年也被称为大数据元年,意味着大数据开始进入商用阶段。在大数据时代,DT+将成为大势所趋。
我要推荐下我自己建的大数据开发学习群:119599574,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享都是学大数据开发的,如果你正在学习大数据,欢迎初学和进阶中的小伙伴。
大数据是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。
大数据具有如下本质特征:
一是 根本目的是服务于决策,大数据能够帮助各类组织和个人大幅度提升决策能力,做出更好的决策和判断;
二是 量度大,大数据通常是指100T以上的数据量,这难以依靠传统的计算手段有效计算,而必须依靠新的计算手段和数据挖掘工具;
三是 频率高,大数据是用户参与与互动而产生的数据,根据用户的网络痕迹来及时地了解用户的相关数据,这种数据是按照天甚至小时来计的高频数据。而传统的数据频率都很低,很多数据是按照月甚至按照年份来计算的;
四是 速度快,大数据是实时性的数据,能够实时反应。例如,在百度搜索框输入一个关键词,能够瞬间呈现,而传统的数据收集方式则是严重滞后的;
五是 维度丰富多样,大数据是全样本数据、多维度数据、非结构化数据,既包括普通的结构化数据,又包括视频和音频等非结构化数据。正是因为大数据的维度多样性,其也更为复杂。
六是 永远在线。在线是大数据的前提条件,从这个角度来说,大数据是永远在线的,能够随时被调用的。大数据通过分析各种网络终端上的用户痕迹,能够更好地分析用户的行为、情感、思想、爱好与需求,来更好地进行决策和分析。
七是 本质是信息资本。大数据是能够为政府和企业带来未来经济利益的信息资源,其本质是信息资产,而且随着大数据的应用越来越广,其价值会越来越大。因此,不应该仅仅把大数据看成成本,而把其看成和土地、资本、人才等一样的新生产要素。
首先,大数据拓展了新的哲学思想。大数据既能处理“因果关系”又能处理“相关关系”,即不仅能够回答“为什么”又能回答“是什么”。在小数据时代,只能通过抽样调查的方式来回答“为什么”。而大数据则能通过全样本的方式来回答“是什么”,即发现相关关系,这能够帮助我们更好地地认识和了解世界。例如,沃尔玛发现在尿布旁边放上啤酒能够提高啤酒的销量,就把尿布和啤酒混搭销售。毫无疑问,尿布和啤酒之间并无因果关系,而二者在一起就形成很好的相关关系。
其次,大数据分析具有显著优势。一是大数据能够实现分析的高度智能化,既能实现信息收集和分析的智能化,又能实现数据与用户需求的有效匹配;二是及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析。例如,传统的市场调研一般耗时几个月,而基于互联网的大数据调研则只需要几天就能得到调研结果;三是成本相对较低。由于可以大量使用技术手段,其成本相应较低。一般来说,传统的市场调研方式,每一份问卷都需要近百元,而互联网调研一份问卷只需要4元左右。
首先,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析,这就要求政府及时开放更多的数据,以提高数据的可获得度。
其次,进行科学的模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平,当然数据量越多也有助于模型的合理构建。
第三,利用专家对观点进行提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。
在大数据时代,大数据已经成为整个社会的底层架构和标配,其上的一切都必须按照大数据的要求进行重构,大数据在解决大问题方面尤为有效,目前在语音搜索、智慧城市建设、互联网金融治理等方面取得了长足的进展,未来更多的领域都必将被大数据所革命和重构。