超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)

keywords:

金字塔融合 图像配准 多尺度ORB orb图像配准 去鬼影 图像融合 图像配齐 图像校正 orb特征的匹配  图像融合去鬼影 image fusion 多帧图像去噪  image alignment 图像对齐 图像融合 orb图像对齐 

 

思量许久,把这个版权属于自己的工作开源出来,耗4,5天写的一个基于多尺度ORB(orbslam2里面的orb)图像对齐,及金字塔多帧融合去噪的工作,配套PPT 源码 及实验图像。

 

适当修改应该够水一篇中文核心了,想发论文的同学请联系我qq:591883385 给我署名就好。

本作者保留此idea和源码的所有权未经许可发论文有风险。

本代码只针对几幅图像重合的区域的去噪融合,至于没有重合的区域的边边角角的优化处理暂时没有放出来。

参考文献:

1,Ghost Removal in Exposure Fusion by Temporal Consistency Assessment

2,Reference-guided exposure fusion in dynamic scenes

3,Tom Mertens 的 Exposure Fusion

4,https://github.com/raulmur/ORB_SLAM2

 

依赖环境
opencv342 X64 Release版本 VS2019
opencv3 vs各版本下载地址: 链接: https://pan.baidu.com/s/1f5oAFqs-u15vkD5LNTcxtw 提取码: 2qj9
上面的百度网盘应该没有opencv版本 VS2019_release_X64_opencv342,可以加QQ群去群文件找:539308722

 

工作内容ppt介绍:

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第1张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第2张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第3张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第4张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第5张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第6张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第7张图片

超级干货!基于多尺度ORB的图像配准对齐(image alignment),及基于多帧(图像多尺度二值化、梯度恒定性的)图像融合去噪 (附讲解ppt、源码)_第8张图片

 

四个文件的源码:

ORBextractor.h:

#ifndef ORBEXTRACTOR_H

#define ORBEXTRACTOR_H

#include 

#include 

#include 


namespace ORB_pyramid

{



    class ExtractorNode

    {

    public:

        ExtractorNode() :bNoMore(false) {}



        void DivideNode(ExtractorNode& n1, ExtractorNode& n2, ExtractorNode& n3, ExtractorNode& n4);



        std::vector vKeys;

        cv::Point2i UL, UR, BL, BR;

        std::list::iterator lit;

        bool bNoMore;

    };



    class ORBextractor

    {

    public:



        enum { HARRIS_SCORE = 0, FAST_SCORE = 1 };



        ORBextractor(int nfeatures, float scaleFactor, int nlevels,

            int iniThFAST, int minThFAST);



        ~ORBextractor() {}



        // Compute the ORB features and descriptors on an image.

        // ORB are dispersed on the image using an octree.

        // Mask is ignored in the current implementation.

        void operator()(cv::InputArray image, cv::InputArray mask,

            std::vector& keypoints,

            cv::OutputArray descriptors);



        int inline GetLevels() {

            return nlevels;
        }



        float inline GetScaleFactor() {

            return scaleFactor;
        }



        std::vector inline GetScaleFactors() {

            return mvScaleFactor;

        }



        std::vector inline GetInverseScaleFactors() {

            return mvInvScaleFactor;

        }



        std::vector inline GetScaleSigmaSquares() {

            return mvLevelSigma2;

        }



        std::vector inline GetInverseScaleSigmaSquares() {

            return mvInvLevelSigma2;

        }



        std::vector mvImagePyramid;



    protected:



        void ComputePyramid(cv::Mat image);

        void ComputeKeyPointsOctTree(std::vector >& allKeypoints);

        std::vector DistributeOctTree(const std::vector& vToDistributeKeys, const int& minX,

            const int& maxX, const int& minY, const int& maxY, const int& nFeatures, const int& level);



        void ComputeKeyPointsOld(std::vector >& allKeypoints);

        std::vector pattern;



        int nfeatures;

        double scaleFactor;

        int nlevels;

        int iniThFAST;

        int minThFAST;



        std::vector mnFeaturesPerLevel;



        std::vector umax;



        std::vector mvScaleFactor;

        std::vector mvInvScaleFactor;

        std::vector mvLevelSigma2;

        std::vector mvInvLevelSigma2;

    };



} //namespace ORB_pyramid



#endif

ORBextractor.cpp :

#include 

#include 

#include 

#include 

#include 



#include "ORBextractor.h"





using namespace cv;

using namespace std;



namespace ORB_pyramid

{



    const int PATCH_SIZE = 31;

    const int HALF_PATCH_SIZE = 15;

    const int EDGE_THRESHOLD = 19;





    static float IC_Angle(const Mat& image, Point2f pt, const vector& u_max)

    {

        int m_01 = 0, m_10 = 0;



        const uchar* center = &image.at(cvRound(pt.y), cvRound(pt.x));



        // Treat the center line differently, v=0

        for (int u = -HALF_PATCH_SIZE; u <= HALF_PATCH_SIZE; ++u)

            m_10 += u * center[u];



        // Go line by line in the circuI853lar patch

        int step = (int)image.step1();

        for (int v = 1; v <= HALF_PATCH_SIZE; ++v)

        {

            // Proceed over the two lines

            int v_sum = 0;

            int d = u_max[v];

            for (int u = -d; u <= d; ++u)

            {

                int val_plus = center[u + v * step], val_minus = center[u - v * step];

                v_sum += (val_plus - val_minus);

                m_10 += u * (val_plus + val_minus);

            }

            m_01 += v * v_sum;

        }



        return fastAtan2((float)m_01, (float)m_10);

    }





    const float factorPI = (float)(CV_PI / 180.f);

    static void computeOrbDescriptor(const KeyPoint& kpt,

        const Mat& img, const Point* pattern,

        uchar* desc)

    {

        float angle = (float)kpt.angle * factorPI;

        float a = (float)cos(angle), b = (float)sin(angle);



        const uchar* center = &img.at(cvRound(kpt.pt.y), cvRound(kpt.pt.x));

        const int step = (int)img.step;



#define GET_VALUE(idx) center[cvRound(pattern[idx].x * b + pattern[idx].y * a) * step + cvRound(pattern[idx].x * a - pattern[idx].y * b)]





        for (int i = 0; i < 32; ++i, pattern += 16)

        {

            int t0, t1, val;

            t0 = GET_VALUE(0); t1 = GET_VALUE(1);

            val = t0 < t1;

            t0 = GET_VALUE(2); t1 = GET_VALUE(3);

            val |= (t0 < t1) << 1;

            t0 = GET_VALUE(4); t1 = GET_VALUE(5);

            val |= (t0 < t1) << 2;

            t0 = GET_VALUE(6); t1 = GET_VALUE(7);

            val |= (t0 < t1) << 3;

            t0 = GET_VALUE(8); t1 = GET_VALUE(9);

            val |= (t0 < t1) << 4;

            t0 = GET_VALUE(10); t1 = GET_VALUE(11);

            val |= (t0 < t1) << 5;

            t0 = GET_VALUE(12); t1 = GET_VALUE(13);

            val |= (t0 < t1) << 6;

            t0 = GET_VALUE(14); t1 = GET_VALUE(15);

            val |= (t0 < t1) << 7;



            desc[i] = (uchar)val;

        }



#undef GET_VALUE

    }





    static int bit_pattern_31_[256 * 4] =

    {

        8,-3, 9,5/*mean (0), correlation (0)*/,

        4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,

        -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,

        7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,

        2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,

        1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,

        -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,

        -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,

        -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,

        10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,

        -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,

        -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,

        7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,

        -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,

        -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,

        -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,

        12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,

        -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,

        -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,

        11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,

        4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,

        5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,

        3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,

        -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,

        -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,

        -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,

        -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,

        -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,

        -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,

        5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,

        5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,

        1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,

        9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,

        4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,

        2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,

        -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,

        -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,

        4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,

        0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,

        -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,

        -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,

        -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,

        8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,

        0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,

        7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,

        -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,

        10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,

        -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,

        10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,

        -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,

        -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,

        3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,

        5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,

        -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,

        3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,

        2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,

        -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,

        -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,

        -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,

        -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,

        6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,

        -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,

        -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,

        -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,

        3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,

        -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,

        -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,

        2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,

        -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,

        -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,

        5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,

        -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,

        -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,

        -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,

        10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,

        7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,

        -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,

        -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,

        7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,

        -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,

        -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,

        -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,

        7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,

        -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,

        1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,

        2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,

        -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,

        -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,

        7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,

        1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,

        9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,

        -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,

        -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,

        7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,

        12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,

        6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,

        5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,

        2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,

        3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,

        2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,

        9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,

        -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,

        -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,

        1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,

        6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,

        2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,

        6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,

        3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,

        7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,

        -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,

        -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,

        -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,

        -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,

        8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,

        4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,

        -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,

        4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,

        -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,

        -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,

        7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,

        -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,

        -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,

        8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,

        -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,

        1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,

        7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,

        -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,

        11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,

        -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,

        3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,

        5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,

        0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,

        -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,

        0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,

        -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,

        5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,

        3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,

        -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,

        -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,

        -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,

        6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,

        -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,

        -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,

        1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,

        4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,

        -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,

        2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,

        -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,

        4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,

        -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,

        -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,

        7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,

        4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,

        -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,

        7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,

        7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,

        -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,

        -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,

        -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,

        2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,

        10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,

        -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,

        8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,

        2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,

        -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,

        -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,

        -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,

        5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,

        -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,

        -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,

        -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,

        -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,

        -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,

        2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,

        -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,

        -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,

        -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,

        -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,

        6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,

        -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,

        11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,

        7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,

        -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,

        -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,

        -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,

        -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,

        -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,

        -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,

        -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,

        -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,

        1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,

        1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,

        9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,

        5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,

        -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,

        -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,

        -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,

        -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,

        8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,

        2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,

        7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,

        -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,

        -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,

        4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,

        3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,

        -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,

        5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,

        4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,

        -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,

        0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,

        -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,

        3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,

        -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,

        8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,

        -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,

        2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,

        10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,

        6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,

        -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,

        -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,

        -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,

        -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,

        -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,

        4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,

        2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,

        6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,

        3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,

        11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,

        -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,

        4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,

        2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,

        -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,

        -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,

        -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,

        6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,

        0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,

        -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,

        -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,

        -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,

        5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,

        2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,

        -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,

        9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,

        11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,

        3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,

        -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,

        3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,

        -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,

        5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,

        8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,

        7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,

        -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,

        7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,

        9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,

        7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,

        -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/

    };



    ORBextractor::ORBextractor(int _nfeatures, float _scaleFactor, int _nlevels,

        int _iniThFAST, int _minThFAST) :

        nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),

        iniThFAST(_iniThFAST), minThFAST(_minThFAST)

    {

        mvScaleFactor.resize(nlevels);

        mvLevelSigma2.resize(nlevels);

        mvScaleFactor[0] = 1.0f;

        mvLevelSigma2[0] = 1.0f;

        for (int i = 1; i < nlevels; i++)

        {

            mvScaleFactor[i] = mvScaleFactor[i - 1] * scaleFactor;

            mvLevelSigma2[i] = mvScaleFactor[i] * mvScaleFactor[i];

        }



        mvInvScaleFactor.resize(nlevels);

        mvInvLevelSigma2.resize(nlevels);

        for (int i = 0; i < nlevels; i++)

        {

            mvInvScaleFactor[i] = 1.0f / mvScaleFactor[i];

            mvInvLevelSigma2[i] = 1.0f / mvLevelSigma2[i];

        }



        mvImagePyramid.resize(nlevels);



        mnFeaturesPerLevel.resize(nlevels);

        float factor = 1.0f / scaleFactor;

        float nDesiredFeaturesPerScale = nfeatures * (1 - factor) / (1 - (float)pow((double)factor, (double)nlevels));



        int sumFeatures = 0;

        for (int level = 0; level < nlevels - 1; level++)

        {

            mnFeaturesPerLevel[level] = cvRound(nDesiredFeaturesPerScale);

            sumFeatures += mnFeaturesPerLevel[level];

            nDesiredFeaturesPerScale *= factor;

        }

        mnFeaturesPerLevel[nlevels - 1] = std::max(nfeatures - sumFeatures, 0);



        const int npoints = 512;

        const Point* pattern0 = (const Point*)bit_pattern_31_;

        std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));



        //This is for orientation

        // pre-compute the end of a row in a circular patch

        umax.resize(HALF_PATCH_SIZE + 1);



        int v, v0, vmax = cvFloor(HALF_PATCH_SIZE * sqrt(2.f) / 2 + 1);

        int vmin = cvCeil(HALF_PATCH_SIZE * sqrt(2.f) / 2);

        const double hp2 = HALF_PATCH_SIZE * HALF_PATCH_SIZE;

        for (v = 0; v <= vmax; ++v)

            umax[v] = cvRound(sqrt(hp2 - v * v));



        // Make sure we are symmetric

        for (v = HALF_PATCH_SIZE, v0 = 0; v >= vmin; --v)

        {

            while (umax[v0] == umax[v0 + 1])

                ++v0;

            umax[v] = v0;

            ++v0;

        }

    }



    static void computeOrientation(const Mat& image, vector& keypoints, const vector& umax)

    {

        for (vector::iterator keypoint = keypoints.begin(),

            keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)

        {

            keypoint->angle = IC_Angle(image, keypoint->pt, umax);

        }

    }



    void ExtractorNode::DivideNode(ExtractorNode& n1, ExtractorNode& n2, ExtractorNode& n3, ExtractorNode& n4)

    {

        const int halfX = ceil(static_cast(UR.x - UL.x) / 2);

        const int halfY = ceil(static_cast(BR.y - UL.y) / 2);



        //Define boundaries of childs

        n1.UL = UL;

        n1.UR = cv::Point2i(UL.x + halfX, UL.y);

        n1.BL = cv::Point2i(UL.x, UL.y + halfY);

        n1.BR = cv::Point2i(UL.x + halfX, UL.y + halfY);

        n1.vKeys.reserve(vKeys.size());



        n2.UL = n1.UR;

        n2.UR = UR;

        n2.BL = n1.BR;

        n2.BR = cv::Point2i(UR.x, UL.y + halfY);

        n2.vKeys.reserve(vKeys.size());



        n3.UL = n1.BL;

        n3.UR = n1.BR;

        n3.BL = BL;

        n3.BR = cv::Point2i(n1.BR.x, BL.y);

        n3.vKeys.reserve(vKeys.size());



        n4.UL = n3.UR;

        n4.UR = n2.BR;

        n4.BL = n3.BR;

        n4.BR = BR;

        n4.vKeys.reserve(vKeys.size());



        //Associate points to childs

        for (size_t i = 0; i < vKeys.size(); i++)

        {

            const cv::KeyPoint& kp = vKeys[i];

            if (kp.pt.x < n1.UR.x)

            {

                if (kp.pt.y < n1.BR.y)

                    n1.vKeys.push_back(kp);

                else

                    n3.vKeys.push_back(kp);

            }

            else if (kp.pt.y < n1.BR.y)

                n2.vKeys.push_back(kp);

            else

                n4.vKeys.push_back(kp);

        }



        if (n1.vKeys.size() == 1)

            n1.bNoMore = true;

        if (n2.vKeys.size() == 1)

            n2.bNoMore = true;

        if (n3.vKeys.size() == 1)

            n3.bNoMore = true;

        if (n4.vKeys.size() == 1)

            n4.bNoMore = true;



    }



    vector ORBextractor::DistributeOctTree(const vector& vToDistributeKeys, const int& minX,

        const int& maxX, const int& minY, const int& maxY, const int& N, const int& level)

    {

        // Compute how many initial nodes   

        const int nIni = round(static_cast(maxX - minX) / (maxY - minY));



        const float hX = static_cast(maxX - minX) / nIni;



        list lNodes;



        vector vpIniNodes;

        vpIniNodes.resize(nIni);



        for (int i = 0; i < nIni; i++)

        {

            ExtractorNode ni;

            ni.UL = cv::Point2i(hX * static_cast(i), 0);

            ni.UR = cv::Point2i(hX * static_cast(i + 1), 0);

            ni.BL = cv::Point2i(ni.UL.x, maxY - minY);

            ni.BR = cv::Point2i(ni.UR.x, maxY - minY);

            ni.vKeys.reserve(vToDistributeKeys.size());



            lNodes.push_back(ni);

            vpIniNodes[i] = &lNodes.back();

        }



        //Associate points to childs

        for (size_t i = 0; i < vToDistributeKeys.size(); i++)

        {

            const cv::KeyPoint& kp = vToDistributeKeys[i];

            vpIniNodes[kp.pt.x / hX]->vKeys.push_back(kp);

        }



        list::iterator lit = lNodes.begin();



        while (lit != lNodes.end())

        {

            if (lit->vKeys.size() == 1)

            {

                lit->bNoMore = true;

                lit++;

            }

            else if (lit->vKeys.empty())

                lit = lNodes.erase(lit);

            else

                lit++;

        }



        bool bFinish = false;



        int iteration = 0;



        vector > vSizeAndPointerToNode;

        vSizeAndPointerToNode.reserve(lNodes.size() * 4);



        while (!bFinish)

        {

            iteration++;



            int prevSize = lNodes.size();



            lit = lNodes.begin();



            int nToExpand = 0;



            vSizeAndPointerToNode.clear();



            while (lit != lNodes.end())

            {

                if (lit->bNoMore)

                {

                    // If node only contains one point do not subdivide and continue

                    lit++;

                    continue;

                }

                else

                {

                    // If more than one point, subdivide

                    ExtractorNode n1, n2, n3, n4;

                    lit->DivideNode(n1, n2, n3, n4);



                    // Add childs if they contain points

                    if (n1.vKeys.size() > 0)

                    {

                        lNodes.push_front(n1);

                        if (n1.vKeys.size() > 1)

                        {

                            nToExpand++;

                            vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(), &lNodes.front()));

                            lNodes.front().lit = lNodes.begin();

                        }

                    }

                    if (n2.vKeys.size() > 0)

                    {

                        lNodes.push_front(n2);

                        if (n2.vKeys.size() > 1)

                        {

                            nToExpand++;

                            vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(), &lNodes.front()));

                            lNodes.front().lit = lNodes.begin();

                        }

                    }

                    if (n3.vKeys.size() > 0)

                    {

                        lNodes.push_front(n3);

                        if (n3.vKeys.size() > 1)

                        {

                            nToExpand++;

                            vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(), &lNodes.front()));

                            lNodes.front().lit = lNodes.begin();

                        }

                    }

                    if (n4.vKeys.size() > 0)

                    {

                        lNodes.push_front(n4);

                        if (n4.vKeys.size() > 1)

                        {

                            nToExpand++;

                            vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(), &lNodes.front()));

                            lNodes.front().lit = lNodes.begin();

                        }

                    }



                    lit = lNodes.erase(lit);

                    continue;

                }

            }



            // Finish if there are more nodes than required features

            // or all nodes contain just one point

            if ((int)lNodes.size() >= N || (int)lNodes.size() == prevSize)

            {

                bFinish = true;

            }

            else if (((int)lNodes.size() + nToExpand * 3) > N)

            {



                while (!bFinish)

                {



                    prevSize = lNodes.size();



                    vector > vPrevSizeAndPointerToNode = vSizeAndPointerToNode;

                    vSizeAndPointerToNode.clear();



                    sort(vPrevSizeAndPointerToNode.begin(), vPrevSizeAndPointerToNode.end());

                    for (int j = vPrevSizeAndPointerToNode.size() - 1; j >= 0; j--)

                    {

                        ExtractorNode n1, n2, n3, n4;

                        vPrevSizeAndPointerToNode[j].second->DivideNode(n1, n2, n3, n4);



                        // Add childs if they contain points

                        if (n1.vKeys.size() > 0)

                        {

                            lNodes.push_front(n1);

                            if (n1.vKeys.size() > 1)

                            {

                                vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(), &lNodes.front()));

                                lNodes.front().lit = lNodes.begin();

                            }

                        }

                        if (n2.vKeys.size() > 0)

                        {

                            lNodes.push_front(n2);

                            if (n2.vKeys.size() > 1)

                            {

                                vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(), &lNodes.front()));

                                lNodes.front().lit = lNodes.begin();

                            }

                        }

                        if (n3.vKeys.size() > 0)

                        {

                            lNodes.push_front(n3);

                            if (n3.vKeys.size() > 1)

                            {

                                vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(), &lNodes.front()));

                                lNodes.front().lit = lNodes.begin();

                            }

                        }

                        if (n4.vKeys.size() > 0)

                        {

                            lNodes.push_front(n4);

                            if (n4.vKeys.size() > 1)

                            {

                                vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(), &lNodes.front()));

                                lNodes.front().lit = lNodes.begin();

                            }

                        }



                        lNodes.erase(vPrevSizeAndPointerToNode[j].second->lit);



                        if ((int)lNodes.size() >= N)

                            break;

                    }



                    if ((int)lNodes.size() >= N || (int)lNodes.size() == prevSize)

                        bFinish = true;



                }

            }

        }



        // Retain the best point in each node

        vector vResultKeys;

        vResultKeys.reserve(nfeatures);

        for (list::iterator lit = lNodes.begin(); lit != lNodes.end(); lit++)

        {

            vector& vNodeKeys = lit->vKeys;

            cv::KeyPoint* pKP = &vNodeKeys[0];

            float maxResponse = pKP->response;



            for (size_t k = 1; k < vNodeKeys.size(); k++)

            {

                if (vNodeKeys[k].response > maxResponse)

                {

                    pKP = &vNodeKeys[k];

                    maxResponse = vNodeKeys[k].response;

                }

            }



            vResultKeys.push_back(*pKP);

        }



        return vResultKeys;

    }



    void ORBextractor::ComputeKeyPointsOctTree(vector >& allKeypoints)

    {

        allKeypoints.resize(nlevels);



        const float W = 30;



        for (int level = 0; level < nlevels; ++level)

        {

            const int minBorderX = EDGE_THRESHOLD - 3;

            const int minBorderY = minBorderX;

            const int maxBorderX = mvImagePyramid[level].cols - EDGE_THRESHOLD + 3;

            const int maxBorderY = mvImagePyramid[level].rows - EDGE_THRESHOLD + 3;



            vector vToDistributeKeys;

            vToDistributeKeys.reserve(nfeatures * 10);



            const float width = (maxBorderX - minBorderX);

            const float height = (maxBorderY - minBorderY);



            const int nCols = width / W;

            const int nRows = height / W;

            const int wCell = ceil(width / nCols);

            const int hCell = ceil(height / nRows);



            for (int i = 0; i < nRows; i++)

            {

                const float iniY = minBorderY + i * hCell;

                float maxY = iniY + hCell + 6;



                if (iniY >= maxBorderY - 3)

                    continue;

                if (maxY > maxBorderY)

                    maxY = maxBorderY;



                for (int j = 0; j < nCols; j++)

                {

                    const float iniX = minBorderX + j * wCell;

                    float maxX = iniX + wCell + 6;

                    if (iniX >= maxBorderX - 6)

                        continue;

                    if (maxX > maxBorderX)

                        maxX = maxBorderX;



                    vector vKeysCell;

                    FAST(mvImagePyramid[level].rowRange(iniY, maxY).colRange(iniX, maxX),

                        vKeysCell, iniThFAST, true);



                    if (vKeysCell.empty())

                    {

                        FAST(mvImagePyramid[level].rowRange(iniY, maxY).colRange(iniX, maxX),

                            vKeysCell, minThFAST, true);

                    }



                    if (!vKeysCell.empty())

                    {

                        for (vector::iterator vit = vKeysCell.begin(); vit != vKeysCell.end(); vit++)

                        {

                            (*vit).pt.x += j * wCell;

                            (*vit).pt.y += i * hCell;

                            vToDistributeKeys.push_back(*vit);

                        }

                    }



                }

            }



            vector& keypoints = allKeypoints[level];

            keypoints.reserve(nfeatures);



            keypoints = DistributeOctTree(vToDistributeKeys, minBorderX, maxBorderX,

                minBorderY, maxBorderY, mnFeaturesPerLevel[level], level);



            const int scaledPatchSize = PATCH_SIZE * mvScaleFactor[level];



            // Add border to coordinates and scale information

            const int nkps = keypoints.size();

            for (int i = 0; i < nkps; i++)

            {

                keypoints[i].pt.x += minBorderX;

                keypoints[i].pt.y += minBorderY;

                keypoints[i].octave = level;

                keypoints[i].size = scaledPatchSize;

            }

        }



        // compute orientations

        for (int level = 0; level < nlevels; ++level)

            computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);

    }



    void ORBextractor::ComputeKeyPointsOld(std::vector >& allKeypoints)

    {

        allKeypoints.resize(nlevels);



        float imageRatio = (float)mvImagePyramid[0].cols / mvImagePyramid[0].rows;



        for (int level = 0; level < nlevels; ++level)

        {

            const int nDesiredFeatures = mnFeaturesPerLevel[level];



            const int levelCols = sqrt((float)nDesiredFeatures / (5 * imageRatio));

            const int levelRows = imageRatio * levelCols;



            const int minBorderX = EDGE_THRESHOLD;

            const int minBorderY = minBorderX;

            const int maxBorderX = mvImagePyramid[level].cols - EDGE_THRESHOLD;

            const int maxBorderY = mvImagePyramid[level].rows - EDGE_THRESHOLD;



            const int W = maxBorderX - minBorderX;

            const int H = maxBorderY - minBorderY;

            const int cellW = ceil((float)W / levelCols);

            const int cellH = ceil((float)H / levelRows);



            const int nCells = levelRows * levelCols;

            const int nfeaturesCell = ceil((float)nDesiredFeatures / nCells);



            vector > > cellKeyPoints(levelRows, vector >(levelCols));



            vector > nToRetain(levelRows, vector(levelCols, 0));

            vector > nTotal(levelRows, vector(levelCols, 0));

            vector > bNoMore(levelRows, vector(levelCols, false));

            vector iniXCol(levelCols);

            vector iniYRow(levelRows);

            int nNoMore = 0;

            int nToDistribute = 0;





            float hY = cellH + 6;



            for (int i = 0; i < levelRows; i++)

            {

                const float iniY = minBorderY + i * cellH - 3;

                iniYRow[i] = iniY;



                if (i == levelRows - 1)

                {

                    hY = maxBorderY + 3 - iniY;

                    if (hY <= 0)

                        continue;

                }



                float hX = cellW + 6;



                for (int j = 0; j < levelCols; j++)

                {

                    float iniX;



                    if (i == 0)

                    {

                        iniX = minBorderX + j * cellW - 3;

                        iniXCol[j] = iniX;

                    }

                    else

                    {

                        iniX = iniXCol[j];

                    }





                    if (j == levelCols - 1)

                    {

                        hX = maxBorderX + 3 - iniX;

                        if (hX <= 0)

                            continue;

                    }





                    Mat cellImage = mvImagePyramid[level].rowRange(iniY, iniY + hY).colRange(iniX, iniX + hX);



                    cellKeyPoints[i][j].reserve(nfeaturesCell * 5);



                    FAST(cellImage, cellKeyPoints[i][j], iniThFAST, true);



                    if (cellKeyPoints[i][j].size() <= 3)

                    {

                        cellKeyPoints[i][j].clear();



                        FAST(cellImage, cellKeyPoints[i][j], minThFAST, true);

                    }





                    const int nKeys = cellKeyPoints[i][j].size();

                    nTotal[i][j] = nKeys;



                    if (nKeys > nfeaturesCell)

                    {

                        nToRetain[i][j] = nfeaturesCell;

                        bNoMore[i][j] = false;

                    }

                    else

                    {

                        nToRetain[i][j] = nKeys;

                        nToDistribute += nfeaturesCell - nKeys;

                        bNoMore[i][j] = true;

                        nNoMore++;

                    }



                }

            }





            // Retain by score



            while (nToDistribute > 0 && nNoMore < nCells)

            {

                int nNewFeaturesCell = nfeaturesCell + ceil((float)nToDistribute / (nCells - nNoMore));

                nToDistribute = 0;



                for (int i = 0; i < levelRows; i++)

                {

                    for (int j = 0; j < levelCols; j++)

                    {

                        if (!bNoMore[i][j])

                        {

                            if (nTotal[i][j] > nNewFeaturesCell)

                            {

                                nToRetain[i][j] = nNewFeaturesCell;

                                bNoMore[i][j] = false;

                            }

                            else

                            {

                                nToRetain[i][j] = nTotal[i][j];

                                nToDistribute += nNewFeaturesCell - nTotal[i][j];

                                bNoMore[i][j] = true;

                                nNoMore++;

                            }

                        }

                    }

                }

            }



            vector& keypoints = allKeypoints[level];

            keypoints.reserve(nDesiredFeatures * 2);



            const int scaledPatchSize = PATCH_SIZE * mvScaleFactor[level];



            // Retain by score and transform coordinates

            for (int i = 0; i < levelRows; i++)

            {

                for (int j = 0; j < levelCols; j++)

                {

                    vector& keysCell = cellKeyPoints[i][j];

                    KeyPointsFilter::retainBest(keysCell, nToRetain[i][j]);

                    if ((int)keysCell.size() > nToRetain[i][j])

                        keysCell.resize(nToRetain[i][j]);





                    for (size_t k = 0, kend = keysCell.size(); k < kend; k++)

                    {

                        keysCell[k].pt.x += iniXCol[j];

                        keysCell[k].pt.y += iniYRow[i];

                        keysCell[k].octave = level;

                        keysCell[k].size = scaledPatchSize;

                        keypoints.push_back(keysCell[k]);

                    }

                }

            }



            if ((int)keypoints.size() > nDesiredFeatures)

            {

                KeyPointsFilter::retainBest(keypoints, nDesiredFeatures);

                keypoints.resize(nDesiredFeatures);

            }

        }



        // and compute orientations

        for (int level = 0; level < nlevels; ++level)

            computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);

    }



    static void computeDescriptors(const Mat& image, vector& keypoints, Mat& descriptors,

        const vector& pattern)

    {

        descriptors = Mat::zeros((int)keypoints.size(), 32, CV_8UC1);



        for (size_t i = 0; i < keypoints.size(); i++)

            computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i));

    }



    void ORBextractor::operator()(InputArray _image, InputArray _mask, vector& _keypoints,

        OutputArray _descriptors)

    {

        if (_image.empty())

            return;



        Mat image = _image.getMat();

        assert(image.type() == CV_8UC1);



        // Pre-compute the scale pyramid

        ComputePyramid(image);



        vector < vector > allKeypoints;

        ComputeKeyPointsOctTree(allKeypoints);

        //ComputeKeyPointsOld(allKeypoints);



        Mat descriptors;



        int nkeypoints = 0;

        for (int level = 0; level < nlevels; ++level)

            nkeypoints += (int)allKeypoints[level].size();

        if (nkeypoints == 0)

            _descriptors.release();

        else

        {

            _descriptors.create(nkeypoints, 32, CV_8U);

            descriptors = _descriptors.getMat();

        }



        _keypoints.clear();

        _keypoints.reserve(nkeypoints);



        int offset = 0;

        for (int level = 0; level < nlevels; ++level)

        {

            vector& keypoints = allKeypoints[level];

            int nkeypointsLevel = (int)keypoints.size();



            if (nkeypointsLevel == 0)

                continue;



            // preprocess the resized image

            Mat workingMat = mvImagePyramid[level].clone();

            GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);



            // Compute the descriptors

            Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel);

            computeDescriptors(workingMat, keypoints, desc, pattern);



            offset += nkeypointsLevel;



            // Scale keypoint coordinates

            if (level != 0)

            {

                float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor);

                for (vector::iterator keypoint = keypoints.begin(),

                    keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)

                    keypoint->pt *= scale;

            }

            // And add the keypoints to the output

            _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());

        }

    }



    void ORBextractor::ComputePyramid(cv::Mat image)

    {

        for (int level = 0; level < nlevels; ++level)

        {

            float scale = mvInvScaleFactor[level];

            Size sz(cvRound((float)image.cols * scale), cvRound((float)image.rows * scale));

            Size wholeSize(sz.width + EDGE_THRESHOLD * 2, sz.height + EDGE_THRESHOLD * 2);

            Mat temp(wholeSize, image.type()), masktemp;

            mvImagePyramid[level] = temp(Rect(EDGE_THRESHOLD, EDGE_THRESHOLD, sz.width, sz.height));



            // Compute the resized image

            if (level != 0)

            {

                resize(mvImagePyramid[level - 1], mvImagePyramid[level], sz, 0, 0, INTER_LINEAR);



                copyMakeBorder(mvImagePyramid[level], temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,

                    BORDER_REFLECT_101 + BORDER_ISOLATED);

            }

            else

            {

                copyMakeBorder(image, temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,

                    BORDER_REFLECT_101);

            }

        }



    }



} //namespace ORB_SLAM

LaplacianBlending.h

#ifndef _LAPLACIANBLENDING_H_ 
#define _LAPLACIANBLENDING_H_ 

#include
#include
#include
#include
using namespace cv;
using namespace std;

class LaplacianBlending {
private:
    Mat_ under;
    Mat_ mid;
    Mat_ over;
    Mat_ over4;
    Mat_ over5;
    Mat_ over6;//图像
    Mat_ under_blendweight_;
    Mat_ mid_blendweight_;
    Mat_ over_blendweight_;
    Mat_ over4_blendweight_;
    Mat_ over5_blendweight_;
    Mat_ over6_blendweight_;//6个图像对应的权重
    vector > underLapPyr, midLapPyr, overLapPyr, over4LapPyr, over5LapPyr, over6LapPyr, resultLapPyr;//Laplacian 金字塔
    Mat underHighestLevel, midHighestLevel, overHighestLevel, over4HighestLevel, over5HighestLevel, over6HighestLevel, resultHighestLevel;
    vector > under_weight_GaussianPyramid, mid_weight_GaussianPyramid, over_weight_GaussianPyramid, over4_weight_GaussianPyramid, over5_weight_GaussianPyramid, over6_weight_GaussianPyramid; ; //weight_s are 3-channels for easier multiplication with RGB  

    int levels;

    void buildPyramids() {
        buildLaplacianPyramid(under, underLapPyr, underHighestLevel);
        buildLaplacianPyramid(mid, midLapPyr, midHighestLevel);
        buildLaplacianPyramid(over, overLapPyr, overHighestLevel);
        buildLaplacianPyramid(over4, over4LapPyr, over4HighestLevel);
        buildLaplacianPyramid(over5, over5LapPyr, over5HighestLevel);
        buildLaplacianPyramid(over6, over6LapPyr, over5HighestLevel);
        build_under_GaussianPyramid();
        build_mid_GaussianPyramid();
        build_over_GaussianPyramid();
        build_over4_GaussianPyramid();
        build_over5_GaussianPyramid();
        build_over6_GaussianPyramid();

    }

    void build_under_GaussianPyramid() {//第一张图像的金字塔  
        assert(underLapPyr.size() > 0);

        under_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(under_blendweight_, currentImg, CV_GRAY2BGR);//权重金字塔
        under_weight_GaussianPyramid.push_back(currentImg); 

        currentImg = under_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size());  

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            under_weight_GaussianPyramid.push_back(down);//权重
            currentImg = _down;
        }
    }

    void build_mid_GaussianPyramid() {
        assert(underLapPyr.size() > 0);

        mid_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(mid_blendweight_, currentImg, CV_GRAY2BGR);
        mid_weight_GaussianPyramid.push_back(currentImg);  

        currentImg = mid_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size()); 

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            mid_weight_GaussianPyramid.push_back(down);
            currentImg = _down;
        }
    }

    void build_over_GaussianPyramid() {
        assert(underLapPyr.size() > 0);

        over_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(over_blendweight_, currentImg, CV_GRAY2BGR);
        over_weight_GaussianPyramid.push_back(currentImg);

        currentImg = over_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size());

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            over_weight_GaussianPyramid.push_back(down);//权重扩展至3通道在三通道加权
            currentImg = _down;
        }
    }
    //
    void build_over4_GaussianPyramid() {
        assert(underLapPyr.size() > 0);

        over4_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(over4_blendweight_, currentImg, CV_GRAY2BGR);
        over4_weight_GaussianPyramid.push_back(currentImg);

        currentImg = over4_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size());

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            over4_weight_GaussianPyramid.push_back(down);
            currentImg = _down;
        }
    }
    //
    void build_over5_GaussianPyramid() {
        assert(underLapPyr.size() > 0);

        over5_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(over5_blendweight_, currentImg, CV_GRAY2BGR); 
        over5_weight_GaussianPyramid.push_back(currentImg);

        currentImg = over5_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size()); 

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            over5_weight_GaussianPyramid.push_back(down);
            currentImg = _down;
        }
    }

    void build_over6_GaussianPyramid() {
        assert(underLapPyr.size() > 0);

        over6_weight_GaussianPyramid.clear();
        Mat currentImg;
        cvtColor(over6_blendweight_, currentImg, CV_GRAY2BGR);
        over6_weight_GaussianPyramid.push_back(currentImg); 

        currentImg = over6_blendweight_;
        for (int l = 1; l < levels + 1; l++) {
            Mat _down;
            if (underLapPyr.size() > l)
                pyrDown(currentImg, _down, underLapPyr[l].size());
            else
                pyrDown(currentImg, _down, underHighestLevel.size());  

            Mat down;
            cvtColor(_down, down, CV_GRAY2BGR);
            over6_weight_GaussianPyramid.push_back(down);
            currentImg = _down;
        }
    }



    void buildLaplacianPyramid(const Mat& img, vector >& lapPyr, Mat& HighestLevel) {
        lapPyr.clear();
        Mat currentImg = img;
        for (int l = 0; l < levels; l++) {
            Mat down, up;
            pyrDown(currentImg, down);
            pyrUp(down, up, currentImg.size());
            Mat lap = currentImg - up;
            lapPyr.push_back(lap);
            currentImg = down;
        }
        currentImg.copyTo(HighestLevel);
    }

    Mat_ reconstructImgFromLapPyramid() {
        //用金字塔重建上采样
        Mat currentImg = resultHighestLevel;
        for (int l = levels - 1; l >= 0; l--) {
            Mat up;

            pyrUp(currentImg, up, resultLapPyr[l].size());
            currentImg = up + resultLapPyr[l];
        }
        return currentImg;
    }

    void blendLapPyrs() {

        Mat w1 = under_weight_GaussianPyramid.back();
        Mat w2 = mid_weight_GaussianPyramid.back();
        Mat w3 = over_weight_GaussianPyramid.back();
        Mat w4 = over4_weight_GaussianPyramid.back();
        Mat w5 = over5_weight_GaussianPyramid.back();
        Mat w6 = over5_weight_GaussianPyramid.back();

        resultHighestLevel = (underHighestLevel.mul(w1) + midHighestLevel.mul(w2) + overHighestLevel.mul(w3) + over4HighestLevel.mul(w4) + over5HighestLevel.mul(w5) + over5HighestLevel.mul(w6)) / (w1 + w2 + w3 + w4 + w5 + w6 + 1e-10);
        for (int l = 0; l < levels; l++) {
            Mat A = underLapPyr[l].mul(under_weight_GaussianPyramid[l]);

            Mat B = midLapPyr[l].mul(mid_weight_GaussianPyramid[l]);
            Mat C = overLapPyr[l].mul(over_weight_GaussianPyramid[l]);
            Mat D = over4LapPyr[l].mul(over4_weight_GaussianPyramid[l]);
            Mat E = over5LapPyr[l].mul(over5_weight_GaussianPyramid[l]);
            Mat F = over6LapPyr[l].mul(over6_weight_GaussianPyramid[l]);
            Mat W = under_weight_GaussianPyramid[l] + mid_weight_GaussianPyramid[l] + over_weight_GaussianPyramid[l] + over4_weight_GaussianPyramid[l] + over5_weight_GaussianPyramid[l] + over6_weight_GaussianPyramid[l] + 1e-10;
            Mat_ blendedLevel = (A + B + C + D + E + F) / W;

            resultLapPyr.push_back(blendedLevel);
        }
    }

public:
    LaplacianBlending(const Mat_& _under, const Mat_& _mid, const Mat_& _over, const Mat_& _over4, const Mat_& _over5, const Mat_& _over6, const Mat_& _under_blendweight_, const Mat_& _mid_blendweight_, const Mat_& _over_blendweight_, const Mat_& _over4_blendweight_, const Mat_& _over5_blendweight_, const Mat_& _over6_blendweight_, int _levels) :
        under(_under), mid(_mid), over(_over), over4(_over4), over5(_over5), over6(_over6), under_blendweight_(_under_blendweight_), mid_blendweight_(_mid_blendweight_), over_blendweight_(_over_blendweight_), over4_blendweight_(_over4_blendweight_), over5_blendweight_(_over5_blendweight_), over6_blendweight_(_over6_blendweight_), levels(_levels)
    {
        assert(_under.size() == _over.size());
        assert(_under.size() == _under_blendweight_.size());
        buildPyramids(); 
        blendLapPyrs();
    };

    Mat_ blend() {
        return reconstructImgFromLapPyramid(); 
    }
};

#endif

Main.cpp:

#include
#include
#include
#include
#include
#include 
#include "ORBextractor.h"
#include"LaplacianBlending.h"
#include 
using namespace std;
using namespace cv;

//宏
#define GhostFree 1
#define PYRAMIDBLENDING 1
#define NFEATURES 1000
#define FSCALEFACTOR 1.2
#define NLEVELS 9
#define  FINITHFAST 25
#define  FMINTHFAST 15
//#define  COLS 4208
//#define  ROWS 3120
#define  COLS_MINI 842
#define  COLS_MINI 624
#define  COLS 842
#define  ROWS 624
mutex mu_;
/********************************************************
*	@brief       : 定义的函数
********************************************************/

Mat_ LaplacianBlend(const Mat_&, const Mat_& , const Mat_& ,
    const Mat_& , const Mat_& , const Mat_& ,
    const Mat_& , const Mat_& , const Mat_& ,
    const Mat_& , const Mat_& , const Mat_& );
void ImageReader(Mat*, Mat*, const int&);
void ImageRegistration(Mat*, Mat*, Mat*, Mat*,vector*,Mat* );
void GradAngleCalculation(Mat*, Mat*, Mat*, Mat*);
void Fake_BaseLine_GradAngle_Generator(Mat* , const int& ,
                                       Mat* , Mat* , Mat* , Mat* , Mat* , Mat* );
void Weight_Generator(Mat*, Mat*, Mat*);
void Weight_Normalize(const int&,Mat*, Mat*, Mat*, Mat*, Mat*, Mat*);
void Weight_Fusion(const int&, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*, Mat*);
void MBBP_Generator(Mat*, Mat* , Mat*);
void Weight_Generator_GHOST(Mat* ,Mat* , Mat* , Mat* );
int main()
{

/********************************************************
*	@brief       : 图像读取 没必要用Vector增加操作
********************************************************/
    vector CodeThread;
    Mat image1_BGR;
    Mat image1_G;
    Mat image2_BGR;
    Mat image2_G;
    Mat image3_BGR;
    Mat image3_G;
    Mat image5_BGR;
    Mat image5_G;
    Mat image6_BGR;
    Mat image6_G; 
    Mat BaseLine;
    Mat BaseLineG;
    CodeThread.push_back(thread(ImageReader, &image1_BGR, &image1_G, 1));
    CodeThread.push_back(thread(ImageReader, &image2_BGR, &image2_G, 2));
    CodeThread.push_back(thread(ImageReader, &image3_BGR, &image3_G, 3));
    CodeThread.push_back(thread(ImageReader, &image5_BGR, &image5_G, 5));
    CodeThread.push_back(thread(ImageReader, &image6_BGR, &image6_G, 6));
    ImageReader(&BaseLine, &BaseLineG, 4);
/********************************************************
*	@brief       : 对baseline图像进行特征点检测和描述
********************************************************/
    ORB_pyramid::ORBextractor* Pyramid_ORBextractor_BaseLine;
    Pyramid_ORBextractor_BaseLine = new ORB_pyramid::ORBextractor(NFEATURES, FSCALEFACTOR, NLEVELS, FINITHFAST, FMINTHFAST);
    vector key_points_BaseLine;
    Mat descriptors_BaseLine;
    (*Pyramid_ORBextractor_BaseLine)(BaseLineG, Mat(), key_points_BaseLine, descriptors_BaseLine);
    Mat Registration_1;
    Mat Registration_2;
    Mat Registration_3;
    Mat Registration_5;
    Mat Registration_6;
    Mat RegistrationGray_1(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat RegistrationGray_2(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat RegistrationGray_3(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat RegistrationGray_4(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat RegistrationGray_5(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat RegistrationGray_6(ROWS, COLS, CV_32FC1, Scalar(0));
    for (auto& ite : CodeThread)
    {
        ite.join();
    }
    CodeThread.clear();
   // DWORD k = ::GetTickCount(); 
/********************************************************
*	@brief       :对待配准图像进行对齐
********************************************************/
    CodeThread.push_back(thread(ImageRegistration, &image2_BGR, &image2_G, &Registration_2, &RegistrationGray_2, &key_points_BaseLine, &descriptors_BaseLine));
    CodeThread.push_back(thread(ImageRegistration, &image3_BGR, &image3_G, &Registration_3, &RegistrationGray_3, &key_points_BaseLine, &descriptors_BaseLine));
    CodeThread.push_back(thread(ImageRegistration, &image5_BGR, &image5_G, &Registration_5, &RegistrationGray_5, &key_points_BaseLine, &descriptors_BaseLine));
    CodeThread.push_back(thread(ImageRegistration, &image6_BGR, &image6_G, &Registration_6, &RegistrationGray_6, &key_points_BaseLine, &descriptors_BaseLine));
    ImageRegistration(&image1_BGR, &image1_G, &Registration_1, &RegistrationGray_1, &key_points_BaseLine, &descriptors_BaseLine);
    Mat BaseLineG_32F(ROWS, COLS, CV_32FC1, Scalar(0));;
    for (int i = 0; i < ROWS; ++i)
    {
        for (int j = 0; j < COLS; ++j)
        {
            BaseLineG_32F.at(i, j) = (float)(BaseLineG.at(i, j)) / 255.0;
        }
    }
   // cout << ::GetTickCount() - k << endl;

    float xfilter_mat[] = {
      0.0116601 ,  0.0861571 ,  0.0116601,
      0.0 ,           0.0 ,        0.0,
     -0.0116601 , -0.0861571 , -0.0116601
    };
    Mat xfilter = Mat(3, 3, CV_32FC1, xfilter_mat);

    float yfilter_mat[] = {
        0.0116601 , 0.0 , -0.0116601,
        0.0861571 , 0.0 , -0.0861571,
        0.0116601 , 0.0 , -0.0116601
    };
    Mat yfilter = Mat(3, 3,  CV_32FC1, yfilter_mat);
    Mat GradAngle1(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat GradAngle2(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat GradAngle3(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat GradAngle5(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat GradAngle6(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat GradAngleBaseLine(ROWS, COLS, CV_32FC1, Scalar(0));
    for (auto& ite : CodeThread)
    {
        ite.join();
    }
    CodeThread.clear();
    //imwrite("./image/test/Registration_2.bmp", Registration_2);
    //imwrite("./image/test/Registration_1.bmp", Registration_1);
    //imwrite("./image/test/Registration_3.bmp", Registration_3);
    //imwrite("./image/test/Registration_5.bmp", Registration_5);
    //imwrite("./image/test/Registration_6.bmp", Registration_6);
/********************************************************
*	@brief       :对每个图像求梯度角
********************************************************/
    //void GradAngleCalculation(Mat * xfilter, Mat * yfilter, Mat * Registration_images_Gray_Cur, Mat * grad_angle)
    CodeThread.push_back(thread(GradAngleCalculation, &xfilter, &yfilter, &RegistrationGray_1, &GradAngle1));
    CodeThread.push_back(thread(GradAngleCalculation, &xfilter, &yfilter, &RegistrationGray_2, &GradAngle2));
    CodeThread.push_back(thread(GradAngleCalculation, &xfilter, &yfilter, &RegistrationGray_3, &GradAngle3));
    CodeThread.push_back(thread(GradAngleCalculation, &xfilter, &yfilter, &RegistrationGray_5, &GradAngle5));
    CodeThread.push_back(thread(GradAngleCalculation, &xfilter, &yfilter, &RegistrationGray_6, &GradAngle6));
    GradAngleCalculation(&xfilter, &yfilter, &BaseLineG_32F,&GradAngleBaseLine);
    Mat Fake_BaseLine_GradAngle(ROWS, COLS, CV_32FC1, Scalar(0));//参考梯度方向
    Mat Weight1(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat Weight2(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat Weight3(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat Weight5(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat Weight6(ROWS, COLS, CV_32FC1, Scalar(0));
    Mat WeightBaseLine(ROWS, COLS, CV_32FC1, Scalar(0));
    for (auto& ite : CodeThread)
    {
        ite.join();
    }
    CodeThread.clear();
    if (GhostFree == 0) {
/********************************************************
*	@brief       :分两块处理,一般图像都是偶数分辨率不考虑为奇数的极端 
电脑开6,7个线程还是比较合适的,分6块处理应更好,这里更多偏向于分块方法的实现
求虚拟的梯度角Mat
********************************************************/
        CodeThread.push_back(thread(Fake_BaseLine_GradAngle_Generator, &Fake_BaseLine_GradAngle, 0,
                                                                       &GradAngle1, &GradAngle2, &GradAngle3, &GradAngleBaseLine,&GradAngle5, &GradAngle6));
        Fake_BaseLine_GradAngle_Generator(&Fake_BaseLine_GradAngle, 1,
                                          &GradAngle1, &GradAngle2, &GradAngle3, &GradAngleBaseLine, &GradAngle5, &GradAngle6);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();
/********************************************************
*	@brief       :根据梯度方向角都求各个图像的权值
********************************************************/
        CodeThread.push_back(thread(Weight_Generator, &Fake_BaseLine_GradAngle,&GradAngle1,&Weight1));
        CodeThread.push_back(thread(Weight_Generator, &Fake_BaseLine_GradAngle, &GradAngle2, &Weight2));
        CodeThread.push_back(thread(Weight_Generator, &Fake_BaseLine_GradAngle, &GradAngle3, &Weight3));
        CodeThread.push_back(thread(Weight_Generator, &Fake_BaseLine_GradAngle, &GradAngle5, &Weight5));
        CodeThread.push_back(thread(Weight_Generator, &Fake_BaseLine_GradAngle, &GradAngle6, &Weight6));
        Weight_Generator(&Fake_BaseLine_GradAngle, &GradAngleBaseLine, &WeightBaseLine);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();
/********************************************************
        *	@brief       :权值归一化
********************************************************/
        CodeThread.push_back(thread(Weight_Normalize, 0, &Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine));
        Weight_Normalize(1, &Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();

    }
    if (GhostFree == 1) {
        //分两块处理,一般图像都是偶数分辨率不考虑为奇数的极端
        Mat Binary_TH1(ROWS, COLS, CV_32FC1, Scalar(0));
        Mat Binary_TH2(ROWS, COLS, CV_32FC1, Scalar(0));
        Mat Binary_TH3(ROWS, COLS, CV_32FC1, Scalar(0));
        Mat Binary_THBaseLine(ROWS, COLS, CV_32FC1, Scalar(1));
        Mat Binary_TH5(ROWS, COLS, CV_32FC1, Scalar(0));
        Mat Binary_TH6(ROWS, COLS, CV_32FC1, Scalar(0));
/********************************************************
        *	@brief       :多尺度二值图求解
********************************************************/
        CodeThread.push_back(thread(MBBP_Generator,  &RegistrationGray_1, &BaseLineG_32F, &Binary_TH1));
        CodeThread.push_back(thread(MBBP_Generator, &RegistrationGray_2, &BaseLineG_32F, &Binary_TH2));
        CodeThread.push_back(thread(MBBP_Generator, &RegistrationGray_3, &BaseLineG_32F, &Binary_TH3));
        CodeThread.push_back(thread(MBBP_Generator, &RegistrationGray_5, &BaseLineG_32F, &Binary_TH5));
        MBBP_Generator(&RegistrationGray_5, &BaseLineG_32F, &Binary_TH6);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();
/********************************************************
        *	@brief       :权重求解
********************************************************/
        CodeThread.push_back(thread(Weight_Generator_GHOST, &GradAngleBaseLine, &GradAngle1, &Weight1, &Binary_TH1));
        CodeThread.push_back(thread(Weight_Generator_GHOST, &GradAngleBaseLine, &GradAngle2, &Weight2, &Binary_TH2));
        CodeThread.push_back(thread(Weight_Generator_GHOST, &GradAngleBaseLine, &GradAngle3, &Weight3, &Binary_TH3));
        CodeThread.push_back(thread(Weight_Generator_GHOST, &GradAngleBaseLine, &GradAngle5, &Weight5, &Binary_TH5));
        WeightBaseLine = 1- WeightBaseLine;
        Weight_Generator_GHOST(&GradAngleBaseLine, &GradAngle6, &Weight6, &Binary_TH6);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();
/********************************************************
         *	@brief       :权重归一化
********************************************************/
        CodeThread.push_back(thread(Weight_Normalize, 0, &Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine));
        Weight_Normalize(1, &Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        CodeThread.clear();
    }
    if (PYRAMIDBLENDING == 0)
    {
/********************************************************
        *	@brief       :直接加权融合
********************************************************/
        Mat newMat(ROWS, COLS, CV_32FC3, Scalar(0));
        CodeThread.push_back(thread(Weight_Fusion, 0, &newMat,&Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine,
                                                   &Registration_1, &Registration_2, &Registration_3, &Registration_5, &Registration_6, &BaseLine));
        Weight_Fusion(1, &newMat, &Weight1, &Weight2, &Weight3, &Weight5, &Weight6, &WeightBaseLine,
            & Registration_1, &Registration_2, &Registration_3, &Registration_5, &Registration_6, &BaseLine);
        for (auto& ite : CodeThread)
        {
            ite.join();
        }
        imshow("./image/test/r.bmp", newMat/255);
        waitKey();
        imwrite("./image/test/r.bmp", newMat);
    }
    else if (PYRAMIDBLENDING == 1)
    {
/********************************************************
       *	@brief       :高斯金字塔融合
********************************************************/
        Mat_ newMat = LaplacianBlend(Registration_1, Registration_2, Registration_3, Registration_5, Registration_6, BaseLine, Weight1, Weight2, Weight3, Weight5, Weight6, WeightBaseLine);
        imshow("./image/test/r_pyr.bmp", newMat/255);
        waitKey();
        imwrite("./image/test/r_pyr.bmp", newMat);
    }
    return 0;
}
Mat_ LaplacianBlend(const Mat_& under, const Mat_& mid, const Mat_& over, const Mat_& over4, const Mat_& over5, const Mat_& over6, const Mat_& W_under, const Mat_& W_mid, const Mat_& W_over, const Mat_& W_over4, const Mat_& W_over5, const Mat_& W_over6)
{
    LaplacianBlending lb(under, mid, over, over4, over5, over6, W_under, W_mid, W_over, W_over4, W_over5, W_over6, 7);
    return lb.blend();
}

void ImageReader(Mat* Image_BGR, Mat* Image_G, const int& num)
{

    int NUM_INT;
    NUM_INT = num;
    string image_path = "./image/Img3s/" + to_string(NUM_INT) + ".bmp";
    *Image_BGR = imread(image_path, 1);
    *Image_G = imread(image_path, 0);
}

void ImageRegistration(Mat* image_BGR, Mat* IMG_proG, Mat* Registration, Mat* RegistrationGray, vector* key_points_BaseLine, Mat* descriptors_1)
{
    //金字塔ORB检测和特征点匹配
    ORB_pyramid::ORBextractor* Pyramid_ORBextractor_;
    Pyramid_ORBextractor_ = new ORB_pyramid::ORBextractor(NFEATURES, FSCALEFACTOR, NLEVELS, FINITHFAST, FMINTHFAST);
    vector key_points_2;
    Mat descriptors_2;
    (*Pyramid_ORBextractor_)((*IMG_proG), Mat(), key_points_2, descriptors_2);
    Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming");
    vector mach;

    matcher->match(*descriptors_1, descriptors_2, mach);

    //删除错误匹配的特征点
    vector InlierMatches;
    vector p1, p2; 
    int MACHSIZE = mach.size();
    for (int i = 0; i < MACHSIZE; i++)
    {
        p1.push_back((*key_points_BaseLine)[mach[i].queryIdx].pt);
        p2.push_back(key_points_2[mach[i].trainIdx].pt);
    }
    vector RANSACStatus;
    findFundamentalMat(p1, p2, RANSACStatus, CV_FM_RANSAC);
    for (int i = 0; i < MACHSIZE; i++)
    {
        if (RANSACStatus[i] != 0)
        {
            InlierMatches.push_back(mach[i]);
        }
    }
    vector IMG_pro_point, Ref_point;
    for (int i = 0; i < InlierMatches.size(); i++)
    {
        IMG_pro_point.push_back((*key_points_BaseLine)[InlierMatches[i].queryIdx].pt);
        Ref_point.push_back(key_points_2[InlierMatches[i].trainIdx].pt);
    }

    //图像配准
    Mat Homography = cv::findHomography(Ref_point, IMG_pro_point, CV_RANSAC); //计算单映性矩阵
    warpPerspective(*image_BGR, *Registration, Homography, cv::Size(COLS, ROWS));//透视
    for (int i = 0; i < ROWS; ++i)
    {
        for (int j = 0; j < COLS; ++j)
        {
            RegistrationGray->at(i, j) = (float)(Registration->at(i, j)[0] * 0.2989 + Registration->at(i, j)[1] * 0.5870 + Registration->at(i, j)[2] * 0.1140) / 255.0;
        }
    }
   
}


void GradAngleCalculation(Mat* xfilter, Mat* yfilter, Mat* Registration_images_Gray_Cur,Mat* grad_angle)
{
        Mat xgrad;//x梯度
        filter2D((*Registration_images_Gray_Cur), xgrad, -1, *xfilter);
        xgrad = xgrad + 1e-10;//防止分母为0
        Mat ygrad;//y梯度
        filter2D(*Registration_images_Gray_Cur, ygrad, -1, *yfilter);
        //Mat grad_angle(ROWS, COLS, CV_32FC1, Scalar(0));
        for (int i = 0; i < ROWS; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                grad_angle->at(i, j) = (float)atan2(ygrad.at(i, j), xgrad.at(i, j));
            }
        }
}
void Fake_BaseLine_GradAngle_Generator(Mat* Fake_BaseLine_GradAngle_Half, const int& type,
                                       Mat* GradAngle_1, Mat* GradAngle_2, Mat* GradAngle_3, Mat* GradAngle_4, Mat* GradAngle_5, Mat* GradAngle_6)
{

    if (type == 0)
    {
        for (int i = 0; i < ROWS / 2; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                float Mid_value_[6];
                Mid_value_[0] = GradAngle_1->at(i, j);
                Mid_value_[1] = GradAngle_2->at(i, j);
                Mid_value_[2] = GradAngle_3->at(i, j);
                Mid_value_[3] = GradAngle_4->at(i, j);
                Mid_value_[4] = GradAngle_5->at(i, j);
                Mid_value_[5] = GradAngle_6->at(i, j);
                sort(Mid_value_, Mid_value_ + 6);
                //mu.lock();
                Fake_BaseLine_GradAngle_Half->at(i, j) = Mid_value_[2];
                //mu.unlock();
            }
        }
    }
    else
    {
        for (int i = ROWS / 2; i < ROWS; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                float Mid_value_[6];
                Mid_value_[0] = GradAngle_1->at(i, j);
                Mid_value_[1] = GradAngle_2->at(i, j);
                Mid_value_[2] = GradAngle_3->at(i, j);
                Mid_value_[3] = GradAngle_4->at(i, j);
                Mid_value_[4] = GradAngle_5->at(i, j);
                Mid_value_[5] = GradAngle_6->at(i, j);
                sort(Mid_value_, Mid_value_ + 6);
                //mu.lock();
                Fake_BaseLine_GradAngle_Half->at(i, j) = Mid_value_[2];
                //mu.unlock();
            }
        }
    }
}
void Weight_Generator(Mat* Fake_BaseLine_GradAngle,
                      Mat* GradAngle,Mat* Weight_element) {
    for (int i = 0; i < ROWS; ++i)
    {
        for (int j = 0; j < COLS; ++j)
        {
            float difference;
            if (abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j)) > CV_PI)
                difference = 2 * CV_PI - abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j));
            else
            {
                difference = abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j));
            }
            Weight_element->at(i, j) = exp((-difference * difference) / (2.0));
        }
    }
}
void Weight_Normalize(const int& type,Mat* GradAngle_1, Mat* GradAngle_2, Mat* GradAngle_3, Mat* GradAngle_4, Mat* GradAngle_5, Mat* GradAngle_6) {

    if (type == 0)
    {
        for (int i = 0; i < ROWS / 2; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                float weight1 = GradAngle_1->at(i, j);
                float weight2 = GradAngle_2->at(i, j);
                float weight3 = GradAngle_3->at(i, j);
                float weight4 = GradAngle_4->at(i, j);
                float weight5 = GradAngle_5->at(i, j);
                float weight6 = GradAngle_6->at(i, j);

                float sum1 = weight1 + weight2 + weight3 + weight4 + weight5 + weight6;
                GradAngle_1->at(i, j) = weight1 / sum1;
                GradAngle_2->at(i, j) = weight2 / sum1;
                GradAngle_3->at(i, j) = weight3 / sum1;
                GradAngle_4->at(i, j) = weight4 / sum1;
                GradAngle_5->at(i, j) = weight5 / sum1;
                GradAngle_6->at(i, j) = weight6 / sum1;
            }
        }
    }
    else
    {
        for (int i = ROWS / 2; i < ROWS; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                float weight1 = GradAngle_1->at(i, j);
                float weight2 = GradAngle_2->at(i, j);
                float weight3 = GradAngle_3->at(i, j);
                float weight4 = GradAngle_4->at(i, j);
                float weight5 = GradAngle_5->at(i, j);
                float weight6 = GradAngle_6->at(i, j);

                float sum1 = weight1 + weight2 + weight3 + weight4 + weight5 + weight6;
                GradAngle_1->at(i, j) = weight1 / sum1;
                GradAngle_2->at(i, j) = weight2 / sum1;
                GradAngle_3->at(i, j) = weight3 / sum1;
                GradAngle_4->at(i, j) = weight4 / sum1;
                GradAngle_5->at(i, j) = weight5 / sum1;
                GradAngle_6->at(i, j) = weight6 / sum1;
            }
        }
    }
}

void Weight_Fusion(const int& type, Mat* new1, Mat* W1, Mat* W2, Mat* W3, Mat* W4, Mat* W5, Mat* W6, Mat* A, Mat* B, Mat* C, Mat* D, Mat* E, Mat* F) {

    if (type == 0)
    {
        for (int i = 0; i < ROWS / 2; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                new1->at(i, j)[0] = W1->at(i, j) * A->at(i, j)[0]
                    + W2->at(i, j) * B->at(i, j)[0]
                    + W3->at(i, j) * C->at(i, j)[0]
                    + W4->at(i, j) * D->at(i, j)[0]
                    + W5->at(i, j) * E->at(i, j)[0]
                    + W6->at(i, j) * E->at(i, j)[0];
                new1->at(i, j)[1] = W1->at(i, j) * A->at(i, j)[1]
                    + W2->at(i, j) * B->at(i, j)[1]
                    + W3->at(i, j) * C->at(i, j)[1]
                    + W4->at(i, j) * D->at(i, j)[1]
                    + W5->at(i, j) * E->at(i, j)[1]
                    + W6->at(i, j) * E->at(i, j)[1];
                new1->at(i, j)[2] = W1->at(i, j) * A->at(i, j)[2]
                    + W2->at(i, j) * B->at(i, j)[2]
                    + W3->at(i, j) * C->at(i, j)[2]
                    + W4->at(i, j) * D->at(i, j)[2]
                    + W5->at(i, j) * E->at(i, j)[2]
                    + W6->at(i, j) * E->at(i, j)[2];
                
            }
        }
    }
    else
    {
        for (int i = ROWS / 2; i < ROWS; ++i)
        {
            for (int j = 0; j < COLS; ++j)
            {
                new1->at(i, j)[0] = W1->at(i, j) * A->at(i, j)[0]
                    + W2->at(i, j) * B->at(i, j)[0]
                    + W3->at(i, j) * C->at(i, j)[0]
                    + W4->at(i, j) * D->at(i, j)[0]
                    + W5->at(i, j) * E->at(i, j)[0]
                    + W6->at(i, j) * E->at(i, j)[0];
                new1->at(i, j)[1] = W1->at(i, j) * A->at(i, j)[1]
                    + W2->at(i, j) * B->at(i, j)[1]
                    + W3->at(i, j) * C->at(i, j)[1]
                    + W4->at(i, j) * D->at(i, j)[1]
                    + W5->at(i, j) * E->at(i, j)[1]
                    + W6->at(i, j) * E->at(i, j)[1];
                new1->at(i, j)[2] = W1->at(i, j) * A->at(i, j)[2]
                    + W2->at(i, j) * B->at(i, j)[2]
                    + W3->at(i, j) * C->at(i, j)[2]
                    + W4->at(i, j) * D->at(i, j)[2]
                    + W5->at(i, j) * E->at(i, j)[2]
                    + W6->at(i, j) * E->at(i, j)[2];
            }
        }
    }
}

void MBBP_Generator(Mat* Registration_images_Gray, Mat* BaseLineGray ,Mat* differ) {

    Mat kernel = getStructuringElement(MORPH_CROSS, Size(3, 3), Point(-1, -1));
    for (float TH = 0.05; TH < 1; TH = TH + 0.1)
    {
            Mat BMap;
            Mat BaseLineBmap;
            cv::threshold((*Registration_images_Gray), BMap, TH, 1.0, THRESH_BINARY);
            cv::threshold((*BaseLineGray), BaseLineBmap, TH, 1.0, THRESH_BINARY);
            *differ = BMap - BaseLineBmap + (*differ);
    }
    cv::threshold(*differ, *differ, 0.5, 1.0, THRESH_BINARY);
    cv::erode(*differ, *differ, kernel);
    Mat kernel1 = getStructuringElement(MORPH_CROSS, Size(5, 5), Point(-1, -1));
    cv::dilate(*differ, *differ, kernel1);
    *differ = 1 - *differ;
}

void Weight_Generator_GHOST(Mat* Fake_BaseLine_GradAngle,
    Mat* GradAngle, Mat* Weight_element, Mat* BTMAP) {
    for (int i = 0; i < ROWS; ++i)
    {
        for (int j = 0; j < COLS; ++j)
        {
            float difference;
            if (abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j)) > CV_PI)
                difference = 2 * CV_PI - abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j));
            else
            {
                difference = abs(GradAngle->at(i, j) - Fake_BaseLine_GradAngle->at(i, j));
            }
            Weight_element->at(i, j) = exp((-difference * difference) / (2.0))* BTMAP->at(i, j);
        }
    }
}

 

结果图:

输入 图像序列1:

结果图:

 

输入图像序列2:

结果图:

你可能感兴趣的:(OpenCv传统图像处理)