蚁群算法学习

     研究生期间,跟随导师进行复杂网络相关研究,我的方向是复杂网络的社团识别,在阅读相关文献中,决定从蚁群算法入手,利用蚁群算法进行社团划分。以下是近期学习的整理:


 蚁群算法原理

   其原理是一种正反馈机制或称增强型学习系统; 它通过【最优路径上蚂蚁数量的增加→信息素强度增加→后来蚂蚁选择概率增大→最优路径上蚂蚁数量更大增加】达到最终收敛于最优路径上L

        根据仿生学家的研究结果,蚂蚁凭借路径寻优的能力能够找到蚁巢与食物之间的最短路径,其原理在于:蚂蚁在所经过的路径上留下一种挥发性分泌物(pheromone,以下称为信息素),信息素随着时间的推移会逐渐挥发消失.蚂蚁在觅食过程中能够感知这种物质的存在及其强度,并以此来指导自己的运动方向,倾向于朝着这种物质强度高的方向移动,即选择该路径的概率与当时这条路径上该物质的强度成正比.信息素强度越高的路径,选择它的蚂蚁就越多,则在该路径上留下的信息素的强度就更大,而强度大的信息素又吸引更多的蚂蚁,从而形成一种正反馈.通过这种正反馈,蚂蚁最终可以发现最佳路径,导致大部分的蚂蚁都会走此路径.


 蚂蚁运动

       蚂蚁的运动过程可以简单归纳如下:

  1. 当周围没有信息素指引时,蚂蚁的运动具有一定的惯性,并有一定的概率选择其他方向
  2. 当周围有信息素的指引时,按照信息素的浓度强度概率性的选择运动方向
  3. 找食物时,蚂蚁留下家相关的A信息素,找家时,蚂蚁留下食物相关的B信息素,并随着移动距离的增加,洒播的信息素越来越少
  4. 随着时间推移,信息素会自行挥发

 复杂度

它是一种启发式算法, 计算复杂性为o (Nc*n2*m) , 其中Nc 是迭代次数, m 是蚂蚁数目, n 是目的节点数目L



 存在问题

       影响蚂蚁是否能够找到好的最优解,依赖这几个关键因素:

  1. 信息素怎么洒播(比如维持在一个特地范围的值等)
  2. 信息素怎么挥发(除了全局挥发,可以让蚂蚁自身进行局部挥发等手段)
  3. 通过怎样的方式让蚂蚁选择运动方向,减少盲目性和不必要性(给蚂蚁一点点智能和经验)
  4. 给蚂蚁和环境一定的记忆能力能够帮助减少搜索空间
  5. 如何建立正反馈机制,定义启发函数,递增地进行问题求解,并且使得到的解与问题定义中现实世界的情况相对应。
  6. 基于蚁群的算法要初始化大量的参数,这些参数的选择会对算法的性能产生较大的影响,但其选取的方法和原则目前尚无理论上的依据,只能通过多次实验调优,因此参数的最佳设置原则还有待进一步研究。
  7. 蚁群算法的搜索时间较长,如何将蚁群算法与遗传算法、免疫算法等优化算法相结合,改善和提高算法性能,以适应海量数据库的知识发现。 


 相关程序  (请尊重原作者劳动,引用时请注明出处。

1.简单的蚁群算法

实验地址 点击打开链接

源码点击打开链接


2.在数据挖掘中运用蚁群算法 ( 转自 点击打开链接)


function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示

end

D(j,i)=D(i,j);   %对称矩阵

end

end

Eta=1./D;          %Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);     %Tau为信息素矩阵

Tabu=zeros(m,n);   %存储并记录路径的生成

NC=1;               %迭代计数器,记录迭代次数

R_best=zeros(NC_max,n);       %各代最佳路线

L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度

L_ave=zeros(NC_max,1);        %各代路线的平均长度

while NC<=NC_max        %停止条件之一:达到最大迭代次数,停止

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];   %随即存取

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';    %此句不太理解?

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n     %所在城市不计算

for i=1:m    

visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问

J=zeros(1,(n-j+1));       %待访问的城市

P=J;                      %待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0   %开始时置0

J(Jc)=k;

Jc=Jc+1;                         %访问的城市个数自加1

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);     %cumsum,元素累加即求和

Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);     %开始距离为0,m*1的列向量

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离

end

L(i)=L(i)+D(R(1),R(n));      %一轮下来后走过的距离

end

L_best(NC)=min(L);           %最佳距离取最小

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线

L_ave(NC)=mean(L);           %此轮迭代后的平均距离

NC=NC+1                      %迭代继续

%%第五步:更新信息素

Delta_Tau=zeros(n,n);        %开始时信息素为n*n的0矩阵

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);          

%此次循环在路径(i,j)上的信息素增量

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

%此次循环在整个路径上的信息素增量

end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

%%第六步:禁忌表清零

Tabu=zeros(m,n);             %%直到最大迭代次数

end

%%第七步:输出结果

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)

Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径

Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

subplot(1,2,1)                  %绘制第一个子图形

DrawRoute(C,Shortest_Route)     %画路线图的子函数

subplot(1,2,2)                  %绘制第二个子图形

plot(L_best)

hold on                         %保持图形

plot(L_ave,'r')

title('平均距离和最短距离')     %标题

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%-------------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')

hold on

end

title('旅行商问题优化结果 ')


你可能感兴趣的:(蚁群算法,社团识别)