“不战而屈人之兵”思想对项目架构设计的战略指导

“不战而屈人之兵”作为战略指导的思想境界,把全胜作为战争的最高目标,以最小代价达成战争目的。

对项目而言,我们要考虑项目的应用场景,用户规模和数据处理能力,以及项目未来3年的目标等。在应用场景的设计中,会考虑业务和技术的结合度量,业务的规模和流程设计。技术的选型没有涉及到。用户规模和数据处理能力,会考虑技术选型和架构设计。具体要考虑架构设计。架构中重要的核心指标:性能、可用性、伸缩性、扩展性的等架构指标。

一、性能

性能就是核心要素之一,具体如下:

(1)系统前端性能优化:

  1. 浏览器访问优化(浏览器缓存、页面压缩传输、合理布局页面、减少Cookie传输)
  • 减少http请求。避免建立太多通讯链路。将js、css、图片文件尽可能合并。避免太多请求。同时,对于系统的后端请求也尽可能进行合理的设计,来避免出现太多交互。
  • 使用浏览器的缓存。http头设置Cache-Control和Expires.js文件名比如可以带时间戳。一旦有更新则更新时间戳,否则缓存;同时尽量避免同一时间更新大量静态资源。
  • 对静态资源进行压缩。
  • css放置在页面最上方,js放下最下面。以提前进行css渲染。同时避免js带来的页面阻塞。但需要case by case。比如页面dom节点需要依赖js生成,则可视情况改变文件位置。
  • 减少cookie传输。同时让静态资源有独立域名,发送静态资源请求时候不发送cookie。以此减少传输代价。cookie可以通过document.cookie获取。

2.CDN加速

  • 缓存图片、文件、CSS以及script脚本。但是pc上的CDN加速效果要好于移动端。经过调研发现,last-mile的延迟越高,CDN的相对有效性越差(具体见文章为什么CDN对移动客户端加速“没有”效果)。

3.反向代理

  • 可以提供七层负载均衡(http请求进行均衡策略),并且可以提供静态资源的缓存,请求转发,防止网络攻击等。比较流行的有nginx。

(2)服务的性能优化:

在高并发请求的情况下,可以将多台应用服务器组成一个集群共同对外服务,提高整体处理能力,改善性能,具体如下:

1.分布式缓存(网站性能优化的第一定律:优先考虑使用缓存优化性能)

  1. 一般来说,存入cache的数据的读写比在2:1以上;且应该是热点数据。
  2. 需要考虑如果采用缓存则可能带来的数据短期内的不一致,或者如果实时更新缓存可能带来的性能和资源开销。
  3. 需要考虑cache一旦失效,大量请求直接命中DB可能带来的服务性能雪崩。所以可以对cache采用集群化部署,以此避免丢失过多数据造成服务压力陡增。
  4. 对于热点数据考虑进行缓存的预热加载。比如高峰期来临前,先将热点数据提前存入缓存。以此提高高峰期的服务性能。
  5. 为了避免恶意攻击,一直query不存在的数据,导致cache无法命中而频繁访问DB,可以将不存在的数据也进行缓存并定期清理。同时有机制对恶意请求进行识别和封禁。
  6. 分布式缓存应该去中心化并集中管理。通过不同实例间的互不通信和同构来保证可扩展性,并降低系统复杂度。

2.异步化

通过分布式消息队列来实现削峰的目的。通过业务配合技术来解决问题。

3.集群

采用集群也是服务虚拟化的一个体现。用以避免单点问题,同时提供更加高可用,高性能的服务。

4.代码优化

  1. 多线程中,如果是密集型计算,线程数不宜超过CPU核数。如果是IO处理,则线程数=[任务执行时间/(任务执行时间-IO等待时间)] * CPU核数。除此之外,我们应该将对象设计成无状态对象,多采用局部对象,适当将锁细化。
  2. 进行资源复用。比如采用单例模式,比如采用连接池。
  3. 合理设置JVM参数。

5.存储性能优化

关系型数据库的索引采用B+树进行实现。而很多的nosql数据库则采用了LSM树进行存储。LSM在内存中保留最新增删改查的数据,直到内存无法放下,则与磁盘的下一级LSM树进行merge。所以对于写操作较多,而读操作更多的是查询最近写入数据的场景,其性能远高于b+树;采用HDFS结合map reduce进行海量数据存储和分析。其能自动进行并发访问和冗余备份,具有很高的可靠性。其等于是实现了RAID的功能。

(3)数据访问接口优化:

数据库层其实是最脆弱的一层,一般在应用设计时在上游就需要把请求拦截掉,数据库层只承担“能力范围内”的访问请求,所以,我们通过在服务层引入队列和缓存,让最底层的数据库高枕无忧。

(4)网站性能指标

  1. 响应时间。
  2. 并发数。如果暂时没有对应的准确监控,针对不同业务模型,可以有不一样的并发数的预估。我们的系统进行峰值并发数预估的话,有一种比较粗略的计算方式,即全天请求平均每秒并发数 * 3。
  3. 吞吐量。比较常见的有QPS(每秒查询数)、HPS(每秒http请求数)以及TPS(每秒处理事务数)。
  4. 性能计数器。包括系统负载、线程数、cpu、内存使用情况等。可以用top、free、cat /proc/cpuinfo等命令来查看。系统负载的定义为当前被CPU执行的线程数/等待被CPU执行的总线程数。当其值与逻辑cpu个数相同时是最佳状态,其代表所有的资源都被最大限度地被利用。但也有人认为当负载为0.7倍逻辑CPU数时最佳。

二、高可用性

衡量一个系统架构设计是否满足高可用的目标,就是假设系统中任何一台或者多台服务器宕机时,以及出现各种不可预期的问题时,系统整体是否依然可用。一般就三个手段、冗余、集群化、分布式。网站高可用的主要手段就是冗余,应用部署在多台服务器上同时提供服务,数据存储在多台服务器上相互备份,任何一台服务器都不会影响应用的整体可以,通常的实现手段即把多台服务器通过负载均衡设备组成一个集群。  安全服务是指计算机网络提供的安全防护措施,包括认证服务、访问控制、数据机密性服务、数据完整性服务和不可否认服务。特定的安全机制是用来实施安全服务的机制,包括加密机制、数据签名机制、访问控制机制、数据完整性机制、认证交换机制、流量填充机制、路由控制机制和公证机制。普遍性的安全机制不是为任何特定的服务而特设的,属于安全管理方面,分为可信功能度、安全标记、事件检测、安全审计跟踪和安全恢复。

、高扩展性

扩展性(Extensibility)指对现有系统影响最小的情况下,系统功能可持续扩展或提升的能力。表现在系统基础设施稳定不需要经常变更,应用之间较少依赖和耦合,当系统增加新功能时,不需要对现有系统的结构和代码进行修改。这个没啥好说。扩展性依赖于前期良好的架构设计。合理业务逻辑抽象,水平/垂直切割分布式化等等。网站可扩展架构的主要手段是事件驱动架构和分布式服务。事件驱动通常利用消息队列实现,通过这种方式将消息生产和处理逻辑分隔开。服务器服务则是将业务和可复用服务分离开来,通过分布式服务框架调用。新增加产品可用通过调用可复用的服务来实现自身的业务逻辑,而对现有产品没有任何影响。

、高伸缩性

服务尽量同构。DB、cache在考虑分布式时尽量提前设计好扩展方案。也可以采用一些主流的对水平伸缩支持较好的nosql、memcached、hbase等。

你可能感兴趣的:(大数据平台架构设计,大数据平台架构设计)