继续记录最近学习的python数据验证工具。
voluptuous与validator的使用比较相似,注意是validator,不是validators。validator和validators是两个不同的python数据验证的库。
Voluptuous的目标:
1、简洁
2、支持复杂的数据结构
3、提供有价值的错误信息
一、安装
$ pip install voluptuous
二、数据验证
1、和validator类似,为了验证数据,我们需要先定义一个模式scheme
.
>>> from voluptuous import Schema
>>> schema = Schema({
'q': str,
'per_page': int,
'page': int,
})
这个模式要求待检查的数据,字段"q"
需要时str
类型,字段"per_page"
需要是int
类型,字段"page"
需要是int
类型。
如果我们要验证的数据是
data = {
"q": "hello world",
"per_page": 20,
"page": 10
}
只需要
>>> schema(data)
{'q': 'hello world', 'per_page': 20, 'page': 10}
如果验证通过,则返回验证的数据。那么,如果验证的参数不能通过呢?我们来看一个验证失败的例子。
failure_data = {
"q": "hello world",
"per_page": "hi",
"page": 10
}
>>> schema(failure_data)
Traceback (most recent call last):
File "", line 1, in
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 221, i
n __call__
return self._compiled([], data)
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 538, i
n validate_dict
return base_validate(path, iteritems(data), out)
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 370, i
n validate_mapping
raise er.MultipleInvalid(errors)
voluptuous.error.MultipleInvalid: expected int for dictionary value @ data['per_
page']
这里字段 "per_page"的值是字符串,不是int类型,验证失败,程序报错。
但是有时在一个程序里,我们会做多个验证,我们只是希望得到每一个验证的结果,成功or失败,不希望因为一处失败,而影响后面程序的执行。这种情况下,我们可以在程序中捕获异常,得到错误信息。
demo.py
from voluptuous import Schema, MultipleInvalid
schema = Schema({
'q': str,
'per_page': int,
'page': int,
})
failure_data = {
"q": "hello world",
"per_page": "hi",
"page": 10
}
try:
schema(failure_data)
except MultipleInvalid as e:
print e.errors
>>> python demo.py
[TypeInvalid('expected int',)]
从e.errors
可以很清晰知道验证时,发生了类型验证错误。
2、在验证的过程中,有时我们需要数据必须含有某一个字段,这时可以使用Required.
以上面的例子为例 :
schema = Schema({
'q': str,
'per_page': int,
'page': int,
})
data = {
"q": "hello world",
"page": 10
}
>>> schema(data)
{'q': 'hello world', 'page': 10}
data
中没有'per_page'
字段,验证依然是成功的;如果我们需要data中必须含有'per_page'
字段,那么schema
可以这样定义:
from voluptuous import Required
schema = Schema({
'q': str,
Required('per_page'): int,
'page': int,
})
data = {
"q": "hello world",
"page": 10
}
>>>schema(data)
Traceback (most recent call last):
File "", line 1, in
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 221, i
n __call__
return self._compiled([], data)
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 538, i
n validate_dict
return base_validate(path, iteritems(data), out)
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 370, i
n validate_mapping
raise er.MultipleInvalid(errors)
voluptuous.error.MultipleInvalid: required key not provided @ data['per_page']
此时data中缺少'per_page'
字段,程序报错。
3、通常我们不仅需要判断数据字段是否存在,类型是否正确,还会对字符串或列表长度进行验证,对数据值的范围进行验证。我们可以将对一个字段
的多项验证用All
封装起来。
>>> from voluptuous import Required, All, Length, Range
>>> schema = Schema({
... Required('q'): All(str, Length(min=1)),
... Required('per_page', default=5): All(int, Range(min=1, max=20)),
... 'page': All(int, Range(min=0)),
... })
举两个验证失败的例子:
(1) 数据中必须含有'q'
字段
>>> from voluptuous import MultipleInvalid
>>>try:
schema({})
except MultipleInvalid as e:
exc = e
>>> exc.errors
[RequiredFieldInvalid('required key not provided',)]
(2) 字段page
的值必须是一个大于等于0的整数。
try:
schema({'q': '#topic', 'per_page': 'one'})
except MultipleInvalid as e:
exc = e
>>> exc.errors
[TypeInvalid('expected int',)]
三、定义schemas
voluptuous的一个优点是不仅仅可以验证字典数据,也可以验证一些其他类型的数据。
1、字面值(Literals)
仅仅匹配模式schema
中定义的值与数据data
中的值是否相等。
>>> schema = Schema(1)
>>> schema(1)
1
>>> schema(2)
Traceback (most recent call last):
File "", line 1, in
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 225, i
n __call__
raise er.MultipleInvalid([e])
voluptuous.error.MultipleInvalid: not a valid value
>>> schema = Schema('a string')
>>> schema('a string')
'a string'
2、类型(types)
>>> schema = Schema(int)
>>> schema(1)
1
>>> schema('one')
Traceback (most recent call last):
File "", line 1, in
File "D:\Python27\lib\site-packages\voluptuous\schema_builder.py", line 225, i
n __call__
raise er.MultipleInvalid([e])
voluptuous.error.MultipleInvalid: expected int
3、URL’s
>>> from voluptuous import Url
>>> schema = Schema(Url())
>>> schema('http://w3.org')
'http://w3.org'
>>> try:
... schema('one')
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "expected a URL"
True
4、列表(Lists)
模式列表中定义了一些合法的值,被检查的数据列表中的每一个值都需要在模式列表中被定义。
>>> schema = Schema([1, 'a', 'string'])
>>> schema([1])
[1]
>>> schema([1, 1, 1])
[1, 1, 1]
>>> schema(['a', 1, 'string', 1, 'string'])
['a', 1, 'string', 1, 'string']
如果想要定义一个列表,可以包含所有python合法值,可以使用list
>>> schema = Schema(list)
>>> schema([])
[]
>>> schema([1, 2])
[1, 2]
注意不是使用[]
>>> schema = Schema([])
>>> try:
... schema([1])
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "not a valid value"
True
>>> schema([])
[]
5、自定义函数
>>> from datetime import datetime
>>> def Date(fmt='%Y-%m-%d'):
... return lambda v: datetime.strptime(v, fmt)
>>> schema = Schema(Date())
>>> schema('2013-03-03')
datetime.datetime(2013, 3, 3, 0, 0)
>>> try:
... schema('2013-03')
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "not a valid value"
True
6、字典
待验证的数据中每一个键值对需要在字典中已定义,否则,验证失败。
>>> schema = Schema({1: 'one', 2: 'two'})
>>> schema({1: 'one'})
{1: 'one'}
如果我们要验证的数据中有额外的键值对,并且这种情况不认为是错误的,可以这样设置。
>>> from voluptuous import ALLOW_EXTRA
>>> schema = Schema({2: 3}, extra=ALLOW_EXTRA)
>>> schema({1: 2, 2: 3})
{1: 2, 2: 3}
如果想要移除额外的键,可以使用Schema(..., extra=REMOVE_EXTRA):
>>> from voluptuous import REMOVE_EXTRA
>>> schema = Schema({2: 3}, extra=REMOVE_EXTRA)
>>> schema({1: 2, 2: 3})
{2: 3}
默认情况下,在字典模式schema
中定义的key-value对,待验证的数据中不需要完全覆盖。
>>> schema = Schema({1: 2, 3: 4})
>>> schema({3: 4})
{3: 4}
如果我们希望完全覆盖,可以设置参数required
>>> schema = Schema({1: 2, 3: 4}, required=True)
>>> try:
... schema({3: 4})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "required key not provided @ data[1]"
True
或者仅仅设置必须含有其中某一个键key
:
>>> schema = Schema({Required(1): 2, 3: 4})
>>> try:
... schema({3: 4})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "required key not provided @ data[1]"
True
>>> schema({1: 2})
{1: 2}
或者仅仅对某一个键设置可选择
属性:
>>> from voluptuous import Optional
>>> schema = Schema({1: 2, Optional(3): 4}, required=True)
>>> try:
... schema({})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "required key not provided @ data[1]"
True
>>> schema({1: 2})
{1: 2}
>>> try:
... schema({1: 2, 4: 5})
... raise AssertionError('MultipleInvalid not raised')
... except MultipleInvalid as e:
... exc = e
>>> str(exc) == "extra keys not allowed @ data[4]"
True
>>> schema({1: 2, 3: 4})
{1: 2, 3: 4}
上一篇:Python数据验证库(二)validator
http://www.jianshu.com/p/eee56214af9c