目前RT-Thread 2.1.0的关于STM32F系列的库的驱动大部分还是标准库的的,在BSP目录中,有stm32f411-nucleo分支和stm32f7-disco是基于HAL库的,但STM32F1系列还没有HAL的支持,借助此次学习机会,现将HAL库移植到RT-Thread 2.1.0的STM32F10x分支中。移植环境:开发板 arm fly V3开发板,编译环境 Keil MDK 5 ,win7 64平台
【1】 将rt-thread-2.1.0\bsp目录下的stm32f10x复制一份,然后重命名成stm32f10x-curer。
【2】 将Libraries目录下的文件和文件夹更换成新的CMSIS文件夹和STM32F1xx_HAL_Driver,SConscript保留。
【3】 用Note Plus打开stm32f10x-curer根目录下rtconfig.py,定位到32行附近,指定ARMCC编译器的安装位置,修改如下:
if CROSS_TOOL == 'gcc':
PLATFORM = 'gcc'
EXEC_PATH = 'D:/SourceryGCC/bin'
elif CROSS_TOOL == 'keil':
PLATFORM = 'armcc'
EXEC_PATH = 'D:/Keil_v5'
elif CROSS_TOOL == 'iar':
PLATFORM = 'iar'
IAR_PATH = 'C:/Program Files/IAR Systems/Embedded Workbench 6.0 Evaluation'
if os.getenv('RTT_EXEC_PATH'):
EXEC_PATH = os.getenv('RTT_EXEC_PATH')
然后保存。
【4】在STM32F1xx_HAL_Driver目录下添加一个SConscript,内容如下:import rtconfig
Import('RTT_ROOT')
from building import *
# get current directory
cwd = GetCurrentDir()
# The set of source files associated with this SConscript file.
src = Glob('Src/*.c')
path = [cwd + '/Inc']
CPPDEFINES = ['USE_HAL_DRIVER']
group = DefineGroup('STM32F1xx_HAL_Driver', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')
然后保存。如果没有HAL库,可以下载一个STM32F CubeMX软件生成一个,很方便。
【5】复制stm32f411-nucleo\drivers分支目录下的drv_usart.c和drv_usart.h,drv_led.c和drv_led.h,然后修改之。
int rt_led_hw_init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
/* Configure GPIO pin: PI1 (LD1) */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
return 0;
}
INIT_BOARD_EXPORT(rt_led_hw_init);
因为arm fly V3的LED灯端口控制引脚是PF6,所以上面代码也要相应改过来。
【6】修改drv_uart.c,下面是代码有修改的部分,可以对照一下
在修改drv_uart.c之前先修改下\stm32f10x-curer\drivers目录下的Conscript脚本,修改如下:
# add the general drivers.
src = Split("""
board.c
stm32f1xx_it.c
drv_led.c
drv_usart.c
""")
#if defined(RT_USING_UART1)
/* UART1 device driver structure */
static struct drv_uart uart1;
struct rt_serial_device serial1;
void USART1_IRQHandler(void)
{
struct drv_uart *uart;
uart = &uart1;
/* enter interrupt */
rt_interrupt_enter();
/* UART in mode Receiver -------------------------------------------------*/
if ((__HAL_UART_GET_FLAG(&uart->UartHandle, UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&uart->UartHandle, UART_IT_RXNE) != RESET))
{
rt_hw_serial_isr(&serial1, RT_SERIAL_EVENT_RX_IND);
/* Clear RXNE interrupt flag */
__HAL_UART_CLEAR_FLAG(&uart->UartHandle, UART_FLAG_RXNE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_USING_UART1 */
#if defined(RT_USING_UART2)
/* UART1 device driver structure */
static struct drv_uart uart2;
struct rt_serial_device serial2;
void USART2_IRQHandler(void)
{
struct drv_uart *uart;
uart = &uart2;
/* enter interrupt */
rt_interrupt_enter();
/* UART in mode Receiver -------------------------------------------------*/
if ((__HAL_UART_GET_FLAG(&uart->UartHandle, UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&uart->UartHandle, UART_IT_RXNE) != RESET))
{
rt_hw_serial_isr(&serial2, RT_SERIAL_EVENT_RX_IND);
/* Clear RXNE interrupt flag */
__HAL_UART_CLEAR_FLAG(&uart->UartHandle, UART_FLAG_RXNE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_USING_UART2 */
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - NVIC configuration for UART interrupt request enable
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
GPIO_InitTypeDef GPIO_InitStruct;
#if defined(RT_USING_UART1)
if (huart->Instance == USART1)
{
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* Enable GPIO TX/RX clock */
USART1_TX_GPIO_CLK_ENABLE();
USART1_RX_GPIO_CLK_ENABLE();
/* Enable USARTx clock */
USART1_CLK_ENABLE();
/*##-2- Configure peripheral GPIO ##########################################*/
/* UART TX GPIO pin configuration */
GPIO_InitStruct.Pin = USART1_TX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(USART1_TX_GPIO_PORT, &GPIO_InitStruct);
/* UART RX GPIO pin configuration */
GPIO_InitStruct.Pin = USART1_RX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_INPUT;
HAL_GPIO_Init(USART1_RX_GPIO_PORT, &GPIO_InitStruct);
HAL_NVIC_SetPriority(USART1_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(USART1_IRQn);
}
#endif /* RT_USING_UART1 */
#if defined(RT_USING_UART2)
if (huart->Instance == USART2)
{
/*##-1- Enable peripherals and GPIO Clocks #################################*/
/* Enable GPIO TX/RX clock */
USART2_TX_GPIO_CLK_ENABLE();
USART2_RX_GPIO_CLK_ENABLE();
/* Enable USARTx clock */
USART2_CLK_ENABLE();
/*##-2- Configure peripheral GPIO ##########################################*/
/* UART TX GPIO pin configuration */
GPIO_InitStruct.Pin = USART2_TX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(USART2_TX_GPIO_PORT, &GPIO_InitStruct);
/* UART RX GPIO pin configuration */
GPIO_InitStruct.Pin = USART2_RX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_INPUT;
HAL_GPIO_Init(USART2_RX_GPIO_PORT, &GPIO_InitStruct);
HAL_NVIC_SetPriority(USART2_IRQn, 0, 1);
HAL_NVIC_EnableIRQ(USART2_IRQn);
}
#endif /* RT_USING_UART2 */
}
/**
* @brief UART MSP De-Initialization
* This function frees the hardware resources used in this example:
* - Disable the Peripheral's clock
* - Revert GPIO and NVIC configuration to their default state
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
{
#if defined(RT_USING_UART1)
if (huart->Instance == USART1)
{
/*##-1- Reset peripherals ##################################################*/
USART1_FORCE_RESET();
USART1_RELEASE_RESET();
/*##-2- Disable peripherals and GPIO Clocks #################################*/
/* Configure UART Tx as alternate function */
HAL_GPIO_DeInit(USART1_TX_GPIO_PORT, USART1_TX_PIN);
/* Configure UART Rx as alternate function */
HAL_GPIO_DeInit(USART1_RX_GPIO_PORT, USART1_RX_PIN);
HAL_NVIC_DisableIRQ(USART1_IRQn);
}
#endif /* RT_USING_UART2 */
#if defined(RT_USING_UART2)
if (huart->Instance == USART2)
{
/*##-1- Reset peripherals ##################################################*/
USART2_FORCE_RESET();
USART2_RELEASE_RESET();
/*##-2- Disable peripherals and GPIO Clocks #################################*/
/* Configure UART Tx as alternate function */
HAL_GPIO_DeInit(USART2_TX_GPIO_PORT, USART2_TX_PIN);
/* Configure UART Rx as alternate function */
HAL_GPIO_DeInit(USART2_RX_GPIO_PORT, USART2_RX_PIN);
HAL_NVIC_DisableIRQ(USART2_IRQn);
}
#endif /* RT_USING_UART2 */
}
int hw_usart_init(void)
{
struct drv_uart *uart;
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef RT_USING_UART1
uart = &uart1;
uart->UartHandle.Instance = USART1;
serial1.ops = &drv_uart_ops;
serial1.config = config;
/* register UART1 device */
rt_hw_serial_register(&serial1, "uart1",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
#endif /* RT_USING_UART1 */
#ifdef RT_USING_UART2
uart = &uart2;
uart->UartHandle.Instance = USART2;
serial2.ops = &drv_uart_ops;
serial2.config = config;
/* register UART2 device */
rt_hw_serial_register(&serial2, "uart2",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
#endif /* RT_USING_UART2 */
return 0;
}
INIT_BOARD_EXPORT(hw_usart_init);
【7】打开board.c,定位到210行附近,加入系统时钟使能,代码修改如下:
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
while(1);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
/**
* This function will initial STM32 board.
*/
void rt_hw_board_init()
{
HAL_Init();
/* Configure the system clock @ 72 Mhz */
SystemClock_Config();
__CRC_CLK_ENABLE();
hw_usart_init();
#ifdef RT_USING_HEAP
rt_system_heap_init((void *)HEAP_BEGIN, (void *)HEAP_END);
#endif
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
#ifdef RT_USING_CONSOLE
rt_console_set_device(CONSOLE_DEVICE);
#endif
}
注意上面HAL_RCC_GetHCLKFreq()/1000是两次systimer中断间隔时间,相应地在rtconfig.h中也要修改成
/* Tick per Second */
#define RT_TICK_PER_SECOND 1000
还要注意下board.h文件中的内容,不然在切换UART1和UART2时可能会有莫名其妙的错误
#include
#include
// Internal SRAM memory size[Kbytes] <8-64>
// Default: 64
#define STM32_SRAM_SIZE 64
#define STM32_SRAM_END (0x20000000 + STM32_SRAM_SIZE * 1024)
// Console on USART: <0=> no console <1=>USART 1 <2=>USART 2 <3=> USART 3
// Default: 1
#define STM32_CONSOLE_USART 1
#if STM32_CONSOLE_USART == 0
#define CONSOLE_DEVICE "no"
#elif STM32_CONSOLE_USART == 1
#define CONSOLE_DEVICE "uart1"
#elif STM32_CONSOLE_USART == 2
#define CONSOLE_DEVICE "uart2"
#elif STM32_CONSOLE_USART == 3
#define CONSOLE_DEVICE "uart3"
#endif
【8】修改drv_led.h的引脚操作
#ifndef __DRV_LED_H
#define __DRV_LED_H
//#include "board.h"
#define rt_led_on() HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_SET)
#define rt_led_off() HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET)
int rt_led_hw_init(void);
#endif
【9】检查下stm32f1xxx_hal_conf.h中的相关开关项,如果有的功能块没有打开,会产生错误。
【10】检查下rtconfig.h,可以把不相关的功能关掉,请确保#define RT_USING_UART1已经打开。
【11】先在命令行中执行下scons --target=mdk5 -s重新生成下工程,当然前提是已经安装了python 2.7.1 和scons 2.5.x。
重新生成工程以后,在keiMDK 5中打开此工程,先尝试编译下,自行解决下编译错误,正常情况下,可以编译通过,下载到开发板之后,可以看到led灯闪烁,在串行终端中可以可看到rt-thread的版本信息。