今天朋友托我写一份程序,大二本科生的数据结构课程实验。要是以前的话,肯定先要定义图的邻接表结构,图的输入输出操作,图的遍历,写了很多代码。但是现在也仅仅越简洁越实用越好,这可能是由于时过境迁,人的心境也就变了。
问题描述:图的路径遍历要比结点遍历具有更为广泛的应用。写一个路径遍历算法,求出从结点L到结点I中途不过结点K的所有简单路径。(图的存储结构没有要求)
/* ==============================================
* Simple path
* Author:[email protected]
* 2015.12.14
*/
#include
#include
#include
using namespace std;
typedef struct
{
char data[13];
int matrix[13][13];
}Graph;
Graph g = {
{'A','B','C','D','E','F','G','H','I','J','K','L','M'},
{
{0,1,1,0,0,1,0,0,0,0,0,1,0},
{1,0,1,1,0,0,1,1,0,0,0,0,1},
{1,1,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,1,0,0,0,0,0,0,0,0},
{0,0,0,1,0,0,0,0,0,0,0,0,0},
{1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,1,1,0,1,0,0},
{0,1,0,0,0,0,1,0,0,0,1,0,0},
{0,0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,1,1},
{0,0,0,0,0,0,0,1,0,1,0,0,0},
{1,0,0,0,0,0,0,0,0,1,0,0,1},
{0,1,0,0,0,0,0,0,0,1,0,1,0}
}
};
deque<int> path;
//i是出发,j是目标,k是不经过节点
void dfs(Graph g,int i,int j,int k)
{
if(i == k || (path.end()!=find(path.begin(),path.end(),i)))
return;
path.push_back(i);
if(i == j)
{
cout<<"Simple path: ";
for(int n = 0;n< path.size(); n++)
{
cout<" ";
}
cout<return;
}
for(int n = 0;n<13;n++)
{
if(g.matrix[i][n] == 1)
{
dfs(g,n,j,k);
}
}
path.pop_back();
}
int main()
{
dfs(g,11,8,10);
getchar();
}
运行结果是只有8条简单路径,简单路径是指没有回路的路径。