在android开发中,经常会在子线程中进行一些操作,当操作完毕后会通过handler发送一些数据给主线程,通知主线程做相应的操作。
探索其背后的原理:子线程 handler 主线程 其实构成了线程模型中的经典问题 生产者消费者模型。
生产者消费者模型:生产者和消费者在同一时间段内共用同一个存储空间,生产者往存储空间中添加数据,消费者从存储空间中取走数据
好处:
- 保证数据生产消费的顺序(通过MessageQueue,先进先出)
- 不管是生产者(子线程)还是消费者(主线程)都只依赖缓冲区(handler),生产者消费者之间不会相互持有,使他们之间没有任何耦合
源码分析:
Hanlder:发送和接收消息
Looper:用于轮询消息队列,一个线程只能有一个Looper
Message:
MessageQueue:
创建Looper的方法是调用Looper.prepare() 方法
在ActivityThread中的main方法中为我们prepare了
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
//其他代码省略...
Looper.prepareMainLooper(); //初始化Looper以及MessageQueue
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop(); //开始轮循操作
throw new RuntimeException("Main thread loop unexpectedly exited");
}
Looper.prepareMainLooper();
public static void prepareMainLooper() {
prepare(false);//消息队列不可以quit
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
prepare有两个重载的方法,主要看 prepare(boolean quitAllowed) quitAllowed的作用是在创建MessageQueue时标识消息队列是否可以销毁, 主线程不可被销毁 下面有介绍
public static void prepare() {
prepare(true);//消息队列可以quit
}
//quitAllowed 主要
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {//不为空表示当前线程已经创建了Looper
throw new RuntimeException("Only one Looper may be created per thread");
//每个线程只能创建一个Looper
}
sThreadLocal.set(new Looper(quitAllowed));//创建Looper并设置给sThreadLocal,这样get的时候就不会为null了
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);//创建了MessageQueue
mThread = Thread.currentThread(); //当前线程的绑定
}
MessageQueue的构造方法
MessageQueue(boolean quitAllowed) {
//mQuitAllowed决定队列是否可以销毁 主线程的队列不可以被销毁需要传入false, 在MessageQueue的quit()方法就不贴源码了
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
同时是在main方法中 Looper.prepareMainLooper() 后Looper.loop(); 开始轮询
public static void loop() {
final Looper me = myLooper();//里面调用了sThreadLocal.get()获得刚才创建的Looper对象
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}//如果Looper为空则会抛出异常
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
//这是一个死循环,从消息队列不断的取消息
Message msg = queue.next(); // might block
if (msg == null) {
//由于刚创建MessageQueue就开始轮询,队列里是没有消息的,等到Handler sendMessage enqueueMessage后
//队列里才有消息
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);//msg.target就是绑定的Handler,详见后面Message的部分,Handler开始
//后面代码省略.....
msg.recycleUnchecked();
}
}
最常见的创建handler
Handler handler=new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
}
};
在内部调用 this(null, false);
public Handler(Callback callback, boolean async) {
//前面省略
mLooper = Looper.myLooper();//获取Looper,**注意不是创建Looper**!
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;//创建消息队列MessageQueue
mCallback = callback; //初始化了回调接口
mAsynchronous = async;
}
Looper.myLooper();
//这是Handler中定义的ThreadLocal ThreadLocal主要解多线程并发的问题
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal sThreadLocal = new ThreadLocal();
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
sThreadLocal.get() will return null unless you’ve called prepare(). 这句话告诉我们get可能返回null 除非先调用prepare()方法创建Looper。在前面已经介绍了
可以直接new Message 但是有更好的方式 Message.obtain。因为可以检查是否有可以复用的Message,用过复用避免过多的创建、销毁Message对象达到优化内存和性能的目地
public static Message obtain(Handler h) {
Message m = obtain();//调用重载的obtain方法
m.target = h;//并绑定的创建Message对象的handler
return m;
}
public static Message obtain() {
synchronized (sPoolSync) {//sPoolSync是一个Object对象,用来同步保证线程安全
if (sPool != null) {//sPool是就是handler dispatchMessage 后 通过recycleUnchecked 回收用以复用的Message
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
创建Message的时候可以通过 Message.obtain(Handler h) 这个构造方法绑定。当然可以在 在Handler 中的 enqueueMessage()也绑定了,所有发送Message的方法都会调用此方法入队,所以在创建Message的时候是可以不绑定的
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
Handler发送消息的重载方法很多,但是主要只有2种。
sendMessage(Message)
sendMessage方法通过一系列重载方法的调用,sendMessage调用sendMessageDelayed,继续调用sendMessageAtTime,继续调用enqueueMessage,继续调用messageQueue的enqueueMessage方法,将消息保存在了消息队列中,而最终由Looper取出,交给Handler的dispatchMessage进行处理
我们可以看到在dispatchMessage方法中,message中callback是一个Runnable对象,如果callback不为空,则直接调用callback的run方法,否则判断mCallback是否为空,mCallback在Handler构造方法中初始化,在主线程通直接通过无参的构造方法new出来的为null,所以会直接执行后面的handleMessage()方法。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {//callback在message的构造方法中初始化或者使用handler.post(Runnable)时候才不为空
handleCallback(msg);
} else {
if (mCallback != null) {//mCallback是一个Callback对象,通过无参的构造方法创建出来的handler,该属性为null,此段不执行
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);//最终执行handleMessage方法
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
在handleMessage(Message)方法中,我们可以拿到message对象,根据不同的需求进行处理,整个Handler机制的流程就结束了。