android Handler机制原理 4个组成部分源码解析

在android开发中,经常会在子线程中进行一些操作,当操作完毕后会通过handler发送一些数据给主线程,通知主线程做相应的操作。
探索其背后的原理:子线程 handler 主线程 其实构成了线程模型中的经典问题 生产者消费者模型。
生产者消费者模型:生产者和消费者在同一时间段内共用同一个存储空间,生产者往存储空间中添加数据,消费者从存储空间中取走数据

这里写图片描述

好处:
- 保证数据生产消费的顺序(通过MessageQueue,先进先出)
- 不管是生产者(子线程)还是消费者(主线程)都只依赖缓冲区(handler),生产者消费者之间不会相互持有,使他们之间没有任何耦合

源码分析

  • Handler
    • Handler机制的相关类
    • 创建Looper
      • 创建MessageQueue以及Looper与当前线程的绑定
    • Looper.loop()
    • 创建Handler
    • 创建Message
    • Message和Handler的绑定
    • Handler发送消息
    • Handler处理消息

Handler机制的相关类

Hanlder:发送和接收消息
Looper:用于轮询消息队列,一个线程只能有一个Looper
Message:
MessageQueue:

创建Looper

创建Looper的方法是调用Looper.prepare() 方法

在ActivityThread中的main方法中为我们prepare了

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        //其他代码省略...
        Looper.prepareMainLooper(); //初始化Looper以及MessageQueue

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop(); //开始轮循操作

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

Looper.prepareMainLooper();

 public static void prepareMainLooper() {
        prepare(false);//消息队列不可以quit
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

prepare有两个重载的方法,主要看 prepare(boolean quitAllowed) quitAllowed的作用是在创建MessageQueue时标识消息队列是否可以销毁, 主线程不可被销毁 下面有介绍

  public static void prepare() {
        prepare(true);//消息队列可以quit
    }
    //quitAllowed 主要
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {//不为空表示当前线程已经创建了Looper
            throw new RuntimeException("Only one Looper may be created per thread");
            //每个线程只能创建一个Looper
        }
        sThreadLocal.set(new Looper(quitAllowed));//创建Looper并设置给sThreadLocal,这样get的时候就不会为null了
    }

创建MessageQueue以及Looper与当前线程的绑定

   private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);//创建了MessageQueue
        mThread = Thread.currentThread(); //当前线程的绑定
   }

MessageQueue的构造方法

 MessageQueue(boolean quitAllowed) {
 //mQuitAllowed决定队列是否可以销毁 主线程的队列不可以被销毁需要传入false, 在MessageQueue的quit()方法就不贴源码了
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

Looper.loop()

同时是在main方法中 Looper.prepareMainLooper() 后Looper.loop(); 开始轮询

public static void loop() {
        final Looper me = myLooper();//里面调用了sThreadLocal.get()获得刚才创建的Looper对象
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }//如果Looper为空则会抛出异常
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            //这是一个死循环,从消息队列不断的取消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                //由于刚创建MessageQueue就开始轮询,队列里是没有消息的,等到Handler sendMessage enqueueMessage后
                //队列里才有消息
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);//msg.target就是绑定的Handler,详见后面Message的部分,Handler开始
            //后面代码省略.....

            msg.recycleUnchecked();
        }
    }

创建Handler

最常见的创建handler

        Handler handler=new Handler(){
            @Override
            public void handleMessage(Message msg) {
                super.handleMessage(msg);
            }
        };

在内部调用 this(null, false);

public Handler(Callback callback, boolean async) {
        //前面省略
        mLooper = Looper.myLooper();//获取Looper,**注意不是创建Looper**!
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//创建消息队列MessageQueue
        mCallback = callback; //初始化了回调接口
        mAsynchronous = async;
    }

Looper.myLooper();

    //这是Handler中定义的ThreadLocal  ThreadLocal主要解多线程并发的问题
  // sThreadLocal.get() will return null unless you've called prepare().
   static final ThreadLocal sThreadLocal = new ThreadLocal();

 public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

sThreadLocal.get() will return null unless you’ve called prepare(). 这句话告诉我们get可能返回null 除非先调用prepare()方法创建Looper。在前面已经介绍了

创建Message

可以直接new Message 但是有更好的方式 Message.obtain。因为可以检查是否有可以复用的Message,用过复用避免过多的创建、销毁Message对象达到优化内存和性能的目地

public static Message obtain(Handler h) {
        Message m = obtain();//调用重载的obtain方法
        m.target = h;//并绑定的创建Message对象的handler

        return m;
    }

public static Message obtain() {
        synchronized (sPoolSync) {//sPoolSync是一个Object对象,用来同步保证线程安全
            if (sPool != null) {//sPool是就是handler dispatchMessage 后 通过recycleUnchecked 回收用以复用的Message 
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

Message和Handler的绑定

创建Message的时候可以通过 Message.obtain(Handler h) 这个构造方法绑定。当然可以在 在Handler 中的 enqueueMessage()也绑定了,所有发送Message的方法都会调用此方法入队,所以在创建Message的时候是可以不绑定的

  private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

Handler发送消息

Handler发送消息的重载方法很多,但是主要只有2种。
sendMessage(Message)
sendMessage方法通过一系列重载方法的调用,sendMessage调用sendMessageDelayed,继续调用sendMessageAtTime,继续调用enqueueMessage,继续调用messageQueue的enqueueMessage方法,将消息保存在了消息队列中,而最终由Looper取出,交给Handler的dispatchMessage进行处理

我们可以看到在dispatchMessage方法中,message中callback是一个Runnable对象,如果callback不为空,则直接调用callback的run方法,否则判断mCallback是否为空,mCallback在Handler构造方法中初始化,在主线程通直接通过无参的构造方法new出来的为null,所以会直接执行后面的handleMessage()方法。

public void dispatchMessage(Message msg) {
    if (msg.callback != null) {//callback在message的构造方法中初始化或者使用handler.post(Runnable)时候才不为空
        handleCallback(msg);
    } else {
        if (mCallback != null) {//mCallback是一个Callback对象,通过无参的构造方法创建出来的handler,该属性为null,此段不执行
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);//最终执行handleMessage方法
    }
}

 private static void handleCallback(Message message) {
        message.callback.run();
    }

Handler处理消息

在handleMessage(Message)方法中,我们可以拿到message对象,根据不同的需求进行处理,整个Handler机制的流程就结束了。

你可能感兴趣的:(android)