- 线性代数向量内积_向量的点积| 使用Python的线性代数
cumubi7453
python线性代数机器学习numpy算法
线性代数向量内积Prerequisite:LinearAlgebra|DefiningaVector先决条件:线性代数|定义向量Linearalgebraisthebranchofmathematicsconcerninglinearequationsbyusingvectorspacesandthroughmatrices.Inotherwords,avectorisamatrixinn-dim
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- SciPy 安装使用教程
小奇JAVA面试
安装使用教程scipy
一、SciPy简介SciPy(ScientificPython)是基于NumPy的开源科学计算库,提供了数值积分、优化、信号处理、线性代数、统计分析等高级科学计算功能。它是构建Python科学计算生态系统的核心组件之一,常用于科研、工程、数据分析等领域。二、安装SciPy2.1使用pip安装(推荐)pipinstallscipy2.2使用Anaconda安装(科学计算推荐)condainstall
- 线性相关和线性无关
我推是大富翁
线性代数线性代数
在线性代数中,线性相关和线性无关是刻画向量组性质的核心概念,以下是关于它们的重要结论总结:一、基本定义与核心判定线性相关的定义向量组{α1,α2,…,αm}\{\alpha_1,\alpha_2,\dots,\alpha_m\}{α1,α2,…,αm}线性相关,当且仅当存在不全为零的实数k1,k2,…,kmk_1,k_2,\dots,k_mk1,k2,…,km线性无关的定义向量组{α1,α2,…,
- 线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础
程序员勇哥
人工智能(AI)线性代数人工智能大数据python
线性代数-第9篇:二次型与正定矩阵:优化问题的数学基础在人工智能、量化投资和大数据分析中,优化问题无处不在,比如机器学习的损失函数最小化、量化投资组合的风险最小化等。而二次型与正定矩阵作为线性代数中的重要概念,为解决这些优化问题提供了坚实的数学基础。本篇将深入解析它们的原理及其在实际场景中的关键应用。一、二次型:从向量到函数的桥梁1.定义与表达式二次型是一个关于向量x\mathbf{x}x的二次齐
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- C# vs Python:谁更适合初学者?用5个关键点教你掌握深度学习中的线性代数
墨瑾轩
一起学学C#【四】c#python深度学习
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣嘿,小伙伴们!今天我们要一起探索如何使用C#来入门深度学习的世界,特别关注其中的线性代数部分。你可能会好奇:“为什么是C#而不是Python?”别急,我们会在接下来的内容中详细解释这个问题,并通过对比两种语言的特点,让你明白选择C#进行深度学习并不是一个坏主意
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 4、理解线性代数的核心概念与应用
rice5
线性代数第五版深度解析线性代数向量空间子空间
理解线性代数的核心概念与应用1引言线性代数是现代数学的重要分支之一,广泛应用于科学、工程、计算机科学等领域。理解线性代数的基本概念和原理不仅有助于学术研究,还能够提升解决实际问题的能力。本文将深入探讨线性代数中的核心概念,帮助读者建立坚实的理论基础,并掌握实际应用技巧。2向量空间向量空间是线性代数的基础概念之一。一个向量空间(V)是指一个集合,其元素称为向量,并且这些向量之间可以进行加法运算和标量
- (线性代数最小二乘问题)Normal Equation(正规方程)
音程
数学线性代数机器学习人工智能
NormalEquation(正规方程)是线性代数中的一个重要概念,主要用于解决最小二乘问题(LeastSquaresProblem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数)。以下是详细介绍:1.定义与数学表达式给定一个超定方程组(方程数量多于未知数):Ax=bA\mathbf{x}=\mathbf{b}Ax=b其中:A∈Rm×nA\in\mathbb{R}^{m
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
Ven%
简单入门pytorch线性代数矩阵深度学习pytorchtensor张量人工智能
文章目录前言第一部分:重温矩阵阶数-方阵的专属标签第二部分:深入张量维度-深度学习的多维容器第三部分:核心区别总结第四部分:在深度学习中为何混淆?如何区分?结论前言在线性代数的殿堂里,“矩阵阶数”是一个基础而明确的概念。然而,当我们踏入深度学习的领域,面对的是更高维的数据结构——张量(Tensor),描述其大小的术语变成了“维度(Dimensions)”或更精确地说“形状(Shape)”。这两个概
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 【AI中的数学-人工智能的数学基石】数学:构建AI大厦的基石
云博士的AI课堂
AI中的数学人工智能AI数学AI中的数学AI数学大模型
第一章人工智能的数学基石第四节数学:构建AI大厦的基石数学是人工智能(AI)的核心基石,贯穿于AI算法的设计、模型的构建以及系统的优化过程中。正如建筑大厦需要坚实的地基,AI的发展依赖于深厚的数学理论和方法。理解和掌握这些数学原理,不仅能够提升对AI技术的理解,还能为创新和解决复杂问题提供强有力的工具。本节将系统性地探讨支撑AI的主要数学领域,包括线性代数、微积分、概率与统计、优化理论以及离散数学
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- 数学中的泛函分析与算子理论
AI天才研究院
计算AI大模型应用入门实战与进阶ChatGPT实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1数学的发展与泛函分析的产生数学作为一门科学,自古以来就在不断地发展和演变。从最初的算术、几何,到后来的微积分、线性代数,再到现代的拓扑学、概率论等,数学的研究领域不断扩展。泛函分析作为一门现代数学的分支,起源于20世纪初,它主要研究无限维空间中的函数和算子,为许多现代科学和工程问题提供了理论基础。1.2泛函分析与算子理论的关系泛函分析与算子理论密切相关。泛函分析主要研究无限维空间
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- C语言实现矩阵转置
人才程序员
C语言系列课程c语言矩阵算法开发语言后端软件工程软件构建
文章目录C语言实现矩阵转置1.什么是矩阵转置?2.矩阵转置的C语言实现2.1定义矩阵2.2转置矩阵2.3示例代码2.4代码解析3.运行示例4.总结C语言实现矩阵转置矩阵转置是线性代数中的一个基本操作,它将一个矩阵的行和列交换。在计算机中,矩阵转置常常用来处理数据结构的优化、图像处理、图形学等领域。在C语言中,实现矩阵转置相对简单。本文将详细介绍矩阵转置的概念、实现方法,并通过示例代码来帮助你理解矩
- 学习大模型---需要掌握的数学知识
喜欢猪猪
决策树机器学习人工智能
1.线性代数:乐高积木的世界想象你有很多乐高积木块。线性代数就是研究怎么用这些积木块搭建东西,以及这些搭建好的东西有什么特性的学问。向量:就像一个有方向的箭头,或者一组排好队的数字。比如:一个箭头:从你家指向学校,有长度(多远)和方向(哪边)。一组数字:[身高,体重,年龄]可以代表一个人。[苹果2个,香蕉3根]可以代表你的水果篮子。向量就是描述事物的一个列表。矩阵:想象一个大表格,就像班级花名册,
- C语言实现4x4矩阵乘法的详细教程
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:矩阵乘法是线性代数的基本操作,在计算机科学的多个领域中有广泛应用。本文详细解释了如何用C语言编写程序来实现两个4x4矩阵的乘法。我们将探讨矩阵乘法的数学原理,并通过C语言的二维数组和嵌套循环来编写代码。该程序将为学习线性代数和C语言编程提供一个实践案例。1.矩阵乘法的数学原理矩阵乘法不仅在线性代数中占据着重要地位,也是计算机科学中不可或缺的一部分。了解矩阵乘法
- 【图像处理入门】8. 数学基础与优化:线性代数、概率与算法调优实战
小米玄戒Andrew
图像处理:从入门到专家图像处理线性代数算法python计算机视觉概率论算法调优
摘要图像处理的核心离不开数学工具的支撑。本文将深入解析线性代数、概率论在图像领域的应用,包括矩阵变换与图像几何操作的关系、噪声模型的数学描述,以及遗传算法、粒子群优化等智能算法在参数调优中的实践。通过理论结合代码案例,帮助读者掌握从数学原理到工程优化的完整链路。一、线性代数:图像变换的数学基石1.矩阵运算与图像几何变换在图像处理入门3中,我们通过仿射变换矩阵实现图像平移、旋转与缩放。其本质是线性代
- 12 行列式01---定义、计算: 二级行列式 ,三阶行列式,n 阶行列式,排列、逆序数
炫云云
深度学习数学理论线性代数自然语言处理数据挖掘深度学习
感谢各位观看这篇文章,点赞、收藏、你的支持是我前进的动力!感谢你的阅读,专栏文章持续更新!关注不迷路!!矩阵线性代数笔记整理汇总,超全面文章目录二级行列式三级行列式n级行列式1、排列2、逆序数排列的性质3、n阶行列式上三角形行列参考12行列式01—定义、计算:二级行列式,三阶行列式,n阶行列式,排列、逆序数12行列式01—定义、计算与性质:n级行列式的性质、
- 线性代数笔记1-二阶行列式和三阶行列式
jack021457
线性代数线性代数矩阵
文章目录前言一、二阶行列式1.二阶行列式的定义2.二阶行列式的计算二、三阶行列式1.三阶行列式的定义2.三阶行列式的计算三、排列与逆序1.排列定义1:定义2:2.逆序定义:逆序数偶排列和奇排列标准排列(自然排列)N(n,(n-1)...3,2,1)的逆序数有几个对换在所有的n级排列中,奇排列和偶排列个数相等,各占一半,也就是n!2\frac{n!}{2}2n!总结前言本笔记记录自B站《线性代数》高
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- MIT线性代数第三讲笔记
可耳(keer)
线性代数笔记
视频链接https://www.youtube.com/watch?v=FX4C-JpTFgY3.1矩阵乘法以A∗B=CA*B=CA∗B=C为例,其中矩阵A是m∗nm*nm∗n,矩阵B是n∗pn*pn∗p,矩阵C则是m∗pm*pm∗p单个元素求矩阵C中的每一个元素,公式如下:cij=∑k=1naik∗bkjc_{ij}=\sum_{k=1}^na_{ik}*b_{kj}cij=k=1∑naik∗b
- MIT线性代数第二讲笔记
可耳(keer)
线性代数线性代数笔记
视频课程入下:2.EliminationwithMatrices.2.1消元法求解例题如下:{x+2y+z=23x+8y+z=124y+z=2\begin{cases}x+2y+z=2\\3x+8y+z=12\\4y+z=2\end{cases}⎩⎨⎧x+2y+z=23x+8y+z=124y+z=2将方程组左侧的系数用矩阵的形式表示,这个方程组如下:[123381041]A∗[xyz]X=[212
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,