原博客地址:https://blog.csdn.net/qq_37423198/article/details/77856744
差分进化算法(Differential Evolution,DE)于1997年由Rainer Storn和Kenneth Price在遗传算法等进化思想的基础上提出的,本质是一种多目标(连续变量)优化算法(MOEAs),用于求解多维空间中整体最优解。
差分进化思想来源即是早期提出的遗传算法(GeneticAlgorithm,GA),模拟遗传学中的杂交(crossover)、变异(mutation)、复制(reproduction)来设计遗传算子。
差分进化算法相对于遗传算法而言,相同点都是通过随机生成初始种群,以种群中每个个体的适应度值为选择标准,主要过程也都包括变异、交叉和选择三个步骤。不同之处在于遗传算法是根据适应度值来控制父代杂交,变异后产生的子代被选择的概率值,在最大化问题中适应值大的个体被选择的概率相应也会大一些。而差分进化算法变异向量是由父代差分向量生成,并与父代个体向量交叉生成新个体向量,直接与其父代个体进行选择。显然差分进化算法相对遗传算法的逼近效果更加显著。
DE的群体由突变和选择过程驱动。突变过程,包括突变和交叉操作,这两步操作被设计用于利用或探索搜索空间,而选择过程被用于确保有希望的个体的信息可以进一步利用。
在解空间中随机均匀产生M个个体,每个个体由n维向量组成
DE/rand/1:Vi(g)=Xp1(g)+F⋅(Xp2(g)−Xp3(g))DE/rand/1:Vi(g)=Xp1(g)+F·(Xp2(g)−Xp3(g))
其中cr∈[0,1]为交叉概率cr∈[0,1]为交叉概率