Kaggle - Bike Sharing Prediction

import pylab
import calendar
import numpy as np
import pandas as pd
import seaborn as sn
from scipy import stats
import missingno as msno
from datetime import datetime
import matplotlib.pyplot as plt
import warnings
pd.options.mode.chained_assignment = None
warnings.filterwarnings("ignore", category=DeprecationWarning)
%matplotlib inline

In [2]:

dailyData = pd.read_csv("C:/Users/_lc/BikeSharingDemand/train.csv")
dailyData.head(2)

Out[2]:

  datetime season holiday workingday weather temp atemp humidity windspeed casual registered count
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0 3 13 16
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0 8 32 40

 

Out[58]:

  time day
0 2011-01-01 00:00:00 1
1 2011-01-01 01:00:00 1
2 2011-01-01 02:00:00 1
3 2011-01-01 03:00:00 1
4 2011-01-01 04:00:00 1

In [5]:

datetime - hourly date + timestamp
season - 1 = spring, 2 = summer, 3 = fall, 4 = winter
holiday - whether the day is considered a holiday
workingday - whether the day is neither a weekend nor holiday
weather -
1: Clear, Few clouds, Partly cloudy, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
temp - temperature in Celsius
atemp - "feels like" temperature in Celsius
humidity - relative humidity
windspeed - wind speed
casual - number of non-registered user rentals initiated
registered - number of registered user rentals initiated
count - number of total rentals (Dependent Variable)

dailyData.info()

RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
datetime      10886 non-null object
season        10886 non-null int64
holiday       10886 non-null int64
workingday    10886 non-null int64
weather       10886 non-null int64
temp          10886 non-null float64
atemp         10886 non-null float64
humidity      10886 non-null int64
windspeed     10886 non-null float64
casual        10886 non-null int64
registered    10886 non-null int64
count         10886 non-null int64
dtypes: float64(3), int64(8), object(1)
memory usage: 1020.6+ KB

In [3]:

dailyData['date'] = dailyData['datetime'].map(lambda x: x.split()[0])
dailyData['datetime'] = pd.to_datetime(dailyData.datetime)
dailyData['month'] = dailyData['datetime'].map(lambda x: x.month)
dailyData['day'] = dailyData['datetime'].map(lambda x: x.day)
dailyData['hour'] = dailyData['datetime'].map(lambda x: x.hour)
dailyData['weekday'] = dailyData['datetime'].map(lambda x: x.weekday())
dailyData.head(2)

Out[3]:

  datetime season holiday workingday weather temp atemp humidity windspeed casual registered count date month day hour weekday
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0 3 13 16 2011-01-01 1 1 0 5
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0 8 32 40 2011-01-01 1 1 1 5

In [4]:

dailyData["season"] = dailyData.season.map({1: "Spring", 2 : "Summer", 3 : "Fall", 4 :"Winter" })
dailyData["weather"] = dailyData.weather.map({1: " Clear + Few clouds + Partly cloudy + Partly cloudy",\
                                        2 : " Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist ", \
                                        3 : " Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds", \
                                        4 :" Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog " })
dailyData.head(2)

Out[4]:

  datetime season holiday workingday weather temp atemp humidity windspeed casual registered count date month day hour weekday
0 2011-01-01 00:00:00 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.84 14.395 81 0.0 3 13 16 2011-01-01 1 1 0 5
1 2011-01-01 01:00:00 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.02 13.635 80 0.0 8 32 40 2011-01-01 1 1 1 5

In [5]:

categoryVariableList = ["hour","weekday","month","season","weather","holiday","workingday"]
for var in categoryVariableList:
    dailyData[var] = dailyData[var].astype("category")
dailyData.head(2)

Out[5]:

  datetime season holiday workingday weather temp atemp humidity windspeed casual registered count date month day hour weekday
0 2011-01-01 00:00:00 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.84 14.395 81 0.0 3 13 16 2011-01-01 1 1 0 5
1 2011-01-01 01:00:00 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.02 13.635 80 0.0 8 32 40 2011-01-01 1 1 1 5

In [6]:

dailyData.drop('datetime', axis=1, inplace=True)
dailyData.head(2)

Out[6]:

  season holiday workingday weather temp atemp humidity windspeed casual registered count date month day hour weekday
0 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.84 14.395 81 0.0 3 13 16 2011-01-01 1 1 0 5
1 Spring 0 0 Clear + Few clouds + Partly cloudy + Partly c... 9.02 13.635 80 0.0 8 32 40 2011-01-01 1 1 1 5

In [7]:

dataTypeDf = dailyData.dtypes.value_counts().to_frame().reset_index().rename(columns={'index':'variableType', 0:'count'})
sn.set_style('darkgrid')
ax = plt.figure(figsize=(10,4)).add_subplot(111)
dataTypeDf.plot(kind='bar',x="variableType",y="count",ax=ax)
ax.set(xlabel='variableTypeariable Type', ylabel='Count',title="Variables DataType Count")

Out[7]:

[Text(0, 0.5, 'Count'),
 Text(0.5, 0, 'variableTypeariable Type'),
 Text(0.5, 1.0, 'Variables DataType Count')]

Kaggle - Bike Sharing Prediction_第1张图片

In [8]:

msno.matrix(dailyData,figsize=(12,5))

Out[8]:

Kaggle - Bike Sharing Prediction_第2张图片

In [8]:

fig, axes = plt.subplots(nrows=2,ncols=2)
fig.set_size_inches(12, 10)
sn.boxplot(data=dailyData,y="count",orient="v",ax=axes[0][0])
sn.boxplot(data=dailyData,y="count",x="season",orient="v",ax=axes[0][1])
sn.boxplot(data=dailyData,y="count",x="hour",orient="v",ax=axes[1][0])
sn.boxplot(data=dailyData,y="count",x="workingday",orient="v",ax=axes[1][1])

axes[0][0].set(ylabel='Count',title="Box Plot On Count")
axes[0][1].set(xlabel='Season', ylabel='Count',title="Box Plot On Count Across Season")
axes[1][0].set(xlabel='Hour Of The Day', ylabel='Count',title="Box Plot On Count Across Hour Of The Day")
axes[1][1].set(xlabel='Working Day', ylabel='Count',title="Box Plot On Count Across Working Day")

Out[8]:

[Text(0, 0.5, 'Count'),
 Text(0.5, 0, 'Working Day'),
 Text(0.5, 1.0, 'Box Plot On Count Across Working Day')]

Kaggle - Bike Sharing Prediction_第3张图片

In [9]:

dailyDataWithoutOutliers = dailyData[np.abs(dailyData["count"]-dailyData["count"].mean())<=(3*dailyData["count"].std())]
len(dailyDataWithoutOutliers)

Out[9]:

10739

In [10]:

corrMatt = dailyData[["temp","atemp","casual","registered","humidity","windspeed","count"]].corr()
mask = np.array(corrMatt)
mask[np.tril_indices_from(mask)] = False
fig,ax= plt.subplots()
fig.set_size_inches(20,10)
sn.heatmap(corrMatt, mask=mask,vmax=.8, square=True,annot=True)

Out[10]:

Kaggle - Bike Sharing Prediction_第4张图片

In [11]:

fig,(ax1,ax2,ax3) = plt.subplots(ncols=3)
fig.set_size_inches(12, 5)
sn.regplot(x="temp", y="count", data=dailyData,ax=ax1)
sn.regplot(x="windspeed", y="count", data=dailyData,ax=ax2)
sn.regplot(x="humidity", y="count", data=dailyData,ax=ax3)

Out[11]:

Kaggle - Bike Sharing Prediction_第5张图片

In [12]:

fig,axes = plt.subplots(ncols=2,nrows=2)
fig.set_size_inches(12, 10)
sn.distplot(dailyData["count"],ax=axes[0][0])
stats.probplot(dailyData["count"], dist='norm', fit=True, plot=axes[0][1])
sn.distplot(np.log(dailyDataWithoutOutliers["count"]),ax=axes[1][0])
stats.probplot(np.log1p(dailyDataWithoutOutliers["count"]), dist='norm', fit=True, plot=axes[1][1])

Out[12]:

((array([-3.82819677, -3.60401975, -3.48099008, ...,  3.48099008,
          3.60401975,  3.82819677]),
  array([0.69314718, 0.69314718, 0.69314718, ..., 6.5971457 , 6.59850903,
         6.5998705 ])),
 (1.3486990121229765, 4.562423868087808, 0.9581176780909608))

Kaggle - Bike Sharing Prediction_第6张图片

In [13]:

fig,(ax1,ax2,ax3,ax4)= plt.subplots(nrows=4)
fig.set_size_inches(12,20)
sortOrder = ["January","February","March","April","May","June","July","August","September","October","November","December"]
hueOrder = ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]

monthAggregated = pd.DataFrame(dailyData.groupby("month")["count"].mean()).reset_index()
sn.barplot(data=monthAggregated,x="month",y="count",ax=ax1)
ax1.set(xlabel='Month', ylabel='Avearage Count',title="Average Count By Month")

hourAggregated = pd.DataFrame(dailyData.groupby(["hour","season"],sort=True)["count"].mean()).reset_index()
sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["count"],hue=hourAggregated["season"], data=hourAggregated, join=True,ax=ax2)
ax2.set(xlabel='Hour Of The Day', ylabel='Users Count',title="Average Users Count By Hour Of The Day Across Season",label='big')

hourAggregated = pd.DataFrame(dailyData.groupby(["hour","weekday"],sort=True)["count"].mean()).reset_index()
sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["count"],hue=hourAggregated["weekday"], data=hourAggregated, join=True,ax=ax3)
ax3.set(xlabel='Hour Of The Day', ylabel='Users Count',title="Average Users Count By Hour Of The Day Across Weekdays",label='big')

hourTransformed = pd.melt(dailyData[["hour","casual","registered"]], id_vars=['hour'], value_vars=['casual', 'registered'])
hourAggregated = pd.DataFrame(hourTransformed.groupby(["hour","variable"],sort=True)["value"].mean()).reset_index()
sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["value"],hue=hourAggregated["variable"],hue_order=["casual","registered"], data=hourAggregated, join=True,ax=ax4)
ax4.set(xlabel='Hour Of The Day', ylabel='Users Count',title="Average Users Count By Hour Of The Day Across User Type",label='big')

Out[13]:

[Text(0, 0.5, 'Users Count'),
 Text(0.5, 0, 'Hour Of The Day'),
 Text(0.5, 1.0, 'Average Users Count By Hour Of The Day Across User Type'),
 None]

Kaggle - Bike Sharing Prediction_第7张图片

In [14]:

dataTrain = pd.read_csv("C:/Users/_lc/BikeSharingDemand/train.csv")
dataTest = pd.read_csv("C:/Users/_lc/BikeSharingDemand/test.csv")
dataTest.head(2)

Out[14]:

  datetime season holiday workingday weather temp atemp humidity windspeed
0 2011-01-20 00:00:00 1 0 1 1 10.66 11.365 56 26.0027
1 2011-01-20 01:00:00 1 0 1 1 10.66 13.635 56 0.0000

In [35]:

data = dataTrain.append(dataTest)
data.reset_index(inplace=True)
data.drop('index',inplace=True,axis=1)
data.head()

Out[35]:

  atemp casual count datetime holiday humidity registered season temp weather windspeed workingday
0 14.395 3.0 16.0 2011-01-01 00:00:00 0 81 13.0 1 9.84 1 0.0 0
1 13.635 8.0 40.0 2011-01-01 01:00:00 0 80 32.0 1 9.02 1 0.0 0
2 13.635 5.0 32.0 2011-01-01 02:00:00 0 80 27.0 1 9.02 1 0.0 0
3 14.395 3.0 13.0 2011-01-01 03:00:00 0 75 10.0 1 9.84 1 0.0 0
4 14.395 0.0 1.0 2011-01-01 04:00:00 0 75 1.0 1 9.84 1 0.0 0

In [36]:

data["datetime"] = pd.to_datetime(data.datetime)
data["year"] = data.datetime.map(lambda x : x.year)
data["month"] = data.datetime.apply(lambda x: x.month)
data["day"] = data.datetime.apply(lambda x : x.day)
data["hour"] = data.datetime.apply(lambda x : x.hour)
data['weekday'] = data.datetime.map(lambda x: x.weekday())
data.head()

Out[36]:

  atemp casual count datetime holiday humidity registered season temp weather windspeed workingday year month day hour weekday
0 14.395 3.0 16.0 2011-01-01 00:00:00 0 81 13.0 1 9.84 1 0.0 0 2011 1 1 0 5
1 13.635 8.0 40.0 2011-01-01 01:00:00 0 80 32.0 1 9.02 1 0.0 0 2011 1 1 1 5
2 13.635 5.0 32.0 2011-01-01 02:00:00 0 80 27.0 1 9.02 1 0.0 0 2011 1 1 2 5
3 14.395 3.0 13.0 2011-01-01 03:00:00 0 75 10.0 1 9.84 1 0.0 0 2011 1 1 3 5
4 14.395 0.0 1.0 2011-01-01 04:00:00 0 75 1.0 1 9.84 1 0.0 0 2011 1 1 4 5

In [37]:

# ---------预测风速为零的---------
from sklearn.ensemble import RandomForestRegressor
dataWind0 = data[data["windspeed"]==0]
dataWindNot0 = data[data["windspeed"]!=0]
rfModel_wind = RandomForestRegressor()
windColumns = ["season","weather","humidity","month","temp","year","atemp"]
rfModel_wind.fit(dataWindNot0[windColumns], dataWindNot0["windspeed"])

wind0Values = rfModel_wind.predict(X= dataWind0[windColumns])
dataWind0["windspeed"] = wind0Values
data = dataWindNot0.append(dataWind0)
data.reset_index(inplace=True)
data.drop('index',inplace=True,axis=1)
data.head()
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
  "10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[37]:

  atemp casual count datetime holiday humidity registered season temp weather windspeed workingday year month day hour weekday
0 12.880 0.0 1.0 2011-01-01 05:00:00 0 75 1.0 1 9.84 2 6.0032 0 2011 1 1 5 5
1 19.695 12.0 36.0 2011-01-01 10:00:00 0 76 24.0 1 15.58 1 16.9979 0 2011 1 1 10 5
2 16.665 26.0 56.0 2011-01-01 11:00:00 0 81 30.0 1 14.76 1 19.0012 0 2011 1 1 11 5
3 21.210 29.0 84.0 2011-01-01 12:00:00 0 77 55.0 1 17.22 1 19.0012 0 2011 1 1 12 5
4 22.725 47.0 94.0 2011-01-01 13:00:00 0 72 47.0 1 18.86 2 19.9995 0 2011 1 1 13 5

In [39]:

categoricalFeatureNames = ["season","holiday","workingday","weather","weekday","month","year","hour"]
numericalFeatureNames = ["temp","humidity","windspeed","atemp"]
dropFeatures = ['casual',"count","datetime","day","registered"]
for var in categoricalFeatureNames:
    data[var] = data[var].astype("category")

In [40]:

dataTrain = data[pd.notnull(data['count'])].sort_values(by=["datetime"])
dataTest = data[~pd.notnull(data['count'])].sort_values(by=["datetime"])
datetimecol = dataTest["datetime"]
yLabels = dataTrain["count"]
yLablesRegistered = dataTrain["registered"]
yLablesCasual = dataTrain["casual"]

dataTrain  = dataTrain.drop(dropFeatures,axis=1)
dataTest  = dataTest.drop(dropFeatures,axis=1)

In [47]:

# 对数均方误差
def rmsle(y, y_,convertExp=True):
    if convertExp:
        y = np.exp(y),
        y_ = np.exp(y_)
    log1 = np.nan_to_num(np.array([np.log(v + 1) for v in y]))
    log2 = np.nan_to_num(np.array([np.log(v + 1) for v in y_]))
    calc = (log1 - log2) ** 2
    return np.sqrt(np.mean(calc))

In [48]:

from sklearn.linear_model import LinearRegression,Ridge,Lasso
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import warnings
pd.options.mode.chained_assignment = None
warnings.filterwarnings("ignore", category=DeprecationWarning)

lModel = LinearRegression()

yLabelsLog = np.log1p(yLabels)
lModel.fit(X = dataTrain,y = yLabelsLog)

preds = lModel.predict(X= dataTrain)
print ("RMSLE Value For Linear Regression: ",rmsle(np.exp(yLabelsLog),np.exp(preds),False))
RMSLE Value For Linear Regression:  0.9779688131592883

In [53]:

ridge_m_ = Ridge()
ridge_params_ = { 'max_iter':[3000],'alpha':[0.1, 1, 2, 3, 4, 10, 30,100,200,300,400,800,900,1000]}
rmsle_scorer = metrics.make_scorer(rmsle, greater_is_better=False)
grid_ridge_m = GridSearchCV( ridge_m_,
                          ridge_params_,
                          scoring = rmsle_scorer,
                          cv=5)
yLabelsLog = np.log1p(yLabels)
grid_ridge_m.fit( dataTrain, yLabelsLog )
preds = grid_ridge_m.predict(X= dataTrain)
print (grid_ridge_m.best_params_)
print ("RMSLE Value For Ridge Regression: ",rmsle(np.exp(yLabelsLog),np.exp(preds),False))

fig,ax= plt.subplots()
fig.set_size_inches(12,5)
df = pd.DataFrame(grid_ridge_m.cv_results_)
df["alpha"] = df["params"].apply(lambda x:x["alpha"])
df["rmsle"] = df["mean_test_score"].apply(lambda x:-x)
sn.pointplot(data=df,x="alpha",y="rmsle",ax=ax)
{'alpha': 0.1, 'max_iter': 3000}
RMSLE Value For Ridge Regression:  0.9779687981095982

Out[53]:

Kaggle - Bike Sharing Prediction_第8张图片

In [55]:

lasso_m_ = Lasso()

alpha  = 1/np.array([0.1, 1, 2, 3, 4, 10, 30,100,200,300,400,800,900,1000])
lasso_params_ = { 'max_iter':[3000],'alpha':alpha}

grid_lasso_m = GridSearchCV( lasso_m_,lasso_params_,scoring = rmsle_scorer,cv=5)
yLabelsLog = np.log1p(yLabels)
grid_lasso_m.fit( dataTrain, yLabelsLog )
preds = grid_lasso_m.predict(X= dataTrain)
print (grid_lasso_m.best_params_)
print ("RMSLE Value For Lasso Regression: ",rmsle(np.exp(yLabelsLog),np.exp(preds),False))

fig,ax= plt.subplots()
fig.set_size_inches(12,5)
df = pd.DataFrame(grid_lasso_m.cv_results_)
df["alpha"] = df["params"].apply(lambda x:x["alpha"])
df["rmsle"] = df["mean_test_score"].apply(lambda x:-x)
sn.pointplot(data=df,x="alpha",y="rmsle",ax=ax)
{'alpha': 0.005, 'max_iter': 3000}
RMSLE Value For Lasso Regression:  0.9781068303163186

Out[55]:

Kaggle - Bike Sharing Prediction_第9张图片

In [56]:

from sklearn.ensemble import GradientBoostingRegressor
gbm = GradientBoostingRegressor(n_estimators=4000,alpha=0.01); ### Test 0.41
yLabelsLog = np.log1p(yLabels)
gbm.fit(dataTrain,yLabelsLog)
preds = gbm.predict(X= dataTrain)
print ("RMSLE Value For Gradient Boost: ",rmsle(np.exp(yLabelsLog),np.exp(preds),False))

predsTest = gbm.predict(X= dataTest)
fig,(ax1,ax2)= plt.subplots(ncols=2)
fig.set_size_inches(12,5)
sn.distplot(yLabels,ax=ax1,bins=50)
sn.distplot(np.exp(predsTest),ax=ax2,bins=50)
RMSLE Value For Gradient Boost:  0.1896091619650034

Out[56]:

Kaggle - Bike Sharing Prediction_第10张图片

 

你可能感兴趣的:(Machine,Learning,大数据练兵场)