python爬取豆瓣电影Top250并进行数据分析

源码:Gitee
欢迎star~
实现爬取数据,存储到sqlite3,使用flask进行展示,同时,使用wordcloud生成词云图片和使用Echart进行图表展示

一、requirements

beautifulsoup4==4.9.1
bs4==0.0.1
click==7.1.2
cycler==0.10.0
Flask==1.1.2
itsdangerous==1.1.0
jieba==0.42.1
Jinja2==2.11.2
kiwisolver==1.2.0
MarkupSafe==1.1.1
matplotlib==3.2.1
numpy==1.18.4
Pillow==7.1.2
pyparsing==2.4.7
python-dateutil==2.8.1
six==1.15.0
soupsieve==2.0.1
Werkzeug==1.0.1
wordcloud @ file:python_reptile/flask/static/extend/wordcloud-1.7.0-cp36-cp36m-win32.whl
xlwt==1.3.0

二、获取并存储数据

爬取豆瓣TOP250数据,并存储到数据库

步骤:

  1. 定义爬取地址

  2. 获取URL的数据列表

    通过User-Agent,得到指定一个URL的网页内容

  3. 存储到sqlite数据库(数据库名:movie.db,表名:movie250

# -*- coding:utf-8 -*-
 
# date: 2020-5-10
# author: jingluo
import sys
from bs4 import BeautifulSoup
import sqlite3
import re
import urllib.request, urllib.error
import xlwt

# 搜索规则
findLink = re.compile(r'')
findImageSrc = re.compile(r', re.S) # re.S让换行符包含在字符中
findTitle = re.compile(r'(.*)')
findRating = re.compile(r'(.*)')
findJudge = re.compile(r'(\d*)人评价')
findInq = re.compile(r'(.*)')
findBd = re.compile(r'

(.*?)

'
, re.S) def main(): # 1. 定义爬取网址 base_url = "https://movie.douban.com/top250?start=" # 2. 获取数据列表 data_list = getData(base_url) # 3. 定义数据库名称 dbpath = "movie.db" # 4. 存储到sqlite数据库 saveData2DB(data_list, dbpath) # 获取数据列表 def getData(base_url): data_list = [] for i in range(0, 10): url = base_url + str(i*25) html = askURl(url) # 逐一解析网页 soup = BeautifulSoup(html, "html.parser") for item in soup.find_all("div", class_="item"): data = [] item = str(item) link = re.findall(findLink, item)[0] data.append(link) imgSrc = re.findall(findImageSrc, item)[0] data.append(imgSrc) titles = re.findall(findTitle, item) if len(titles) == 2: ctitle = titles[0] data.append(ctitle) otitle = titles[1].replace("/", "") data.append(otitle) else: data.append(titles[0]) data.append('') rating = re.findall(findRating, item)[0] data.append(rating) judege = re.findall(findJudge, item)[0] data.append(judege) inq = re.findall(findInq, item) if len(inq) != 0: data.append(inq[0].replace("。", "")) else: data.append('') bd = re.findall(findBd, item)[0] bd = re.sub('(\s+)?', " ", bd) bd = re.sub('/', " ", bd) data.append(bd.strip()) data_list.append(data) return data_list # 得到指定一个URL的网页内容 def askURl(url): # 用户验证信息 head = {"User-Agent" : "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36"} request = urllib.request.Request(url, headers = head) html = "" try: response = urllib.request.urlopen(request) html = response.read().decode("utf-8") except urllib.error.URLError as e: if hasattr(e, "code"): print("请求出错",e.code) if hasattr(e, "reason"): print("错误原因",e.reason) return html # 保存到sqlite数据库中 def saveData2DB(data_list, dbpath): init_db(dbpath) conn = sqlite3.connect(dbpath) cur = conn.cursor() for data in data_list: for index in range(len(data)): if index == 4 or index == 5: continue data[index] = '"' +data[index] + '"' sql = ''' insert into movie250 ( info_link,pic_link,cname,ename,score,rated,instroduction,info ) values(%s)'''%",".join(data) cur.execute(sql) conn.commit() cur.close() conn.close() # 初始化数据库 def init_db(dbpath): sql = ''' create table movie250 ( id integer primary key autoincrement, info_link text, pic_link text, cname varchar, ename varchar, score numeric, rated numeric, instroduction text, info text ); ''' conn = sqlite3.connect(dbpath) cursor = conn.cursor() cursor.execute(sql) conn.commit() conn.close()

三、获取词云

  1. 读取数据库
  2. 使用jieba进行分割
  3. 使用word_length.txt存储词云长度
  4. 将原始图转成数组
  5. 使用ImageWordCloud初始化图片
  6. 使用pyplot生成和保存图片
def makeWordCloud():
	# 准备词云所需的词
	con = sqlite3.connect('movie.db')
	cur = con.cursor()
	sql = 'select instroduction from movie250'
	data = cur.execute(sql)
	text = ""
	for item in data:
		text = text + item[0]
	cur.close()
	con.close()

	cut = jieba.cut(text)
	string = ' '.join(cut)

	filename = 'word_length.txt'
	with open(filename, 'w') as file:
		file.write(str(len(string)))
		file.close()

	img = Image.open(r'../static/assets/img/tree.jpg')
	img_arry = np.array(img) # 将图片转换成数组
	wc = WordCloud(
		background_color = 'white',
		mask = img_arry,
		font_path = 'STCAIYUN.TTF' # 字体锁在位置: C:\Windows\Fonts
		)
	wc.generate_from_text(string)

	# 绘制图片
	fig = plt.figure(1)
	plt.imshow(wc)
	plt.axis('off') # 是否显示坐标轴
	# plt.show() # 显示生成的词云图片

	# 输出词云图片到文件
	plt.savefig(r'../static/assets/img/word.jpg', dpi=800)
	plt.close()

四、完成业务代码

# -*- coding:utf-8 -*-
 
# date: 2020-5-30
# author: jingluo
from flask import Flask, render_template,request, session
import get_douban_databses
import sqlite3
import os

# 分词
import jieba
# 绘图,数据可视化
from matplotlib import pyplot as plt
# 词云
from wordcloud import WordCloud
# 图片处理
from PIL import Image
# 矩阵运算
import numpy as np

# 自定义template路径
app = Flask(__name__,template_folder="../templates/",
	static_folder='../static/') #应用

# flask的session需要用到的密钥字符串
app.config["SECRET_KEY"] = "akjsdhkjashdkjhaksk120191101asd"

@app.route("/")
def index():
	try:
		with open('word_length.txt', 'r') as file:
			word_length = file.readline()
			session['word_length'] = word_length
			file.close()
	except:
		word_length = 5633
		session['word_length'] = word_length
	return render_template("template/home.html",word_length = word_length)

@app.route("/home")
def home():
	word_length = session.get('word_length')
	return render_template("template/home.html",word_length = word_length)

@app.route("/movie")
def movie():
	movies = []
	con = sqlite3.connect("movie.db")
	cur = con.cursor()
	sql = "select * from movie250"
	data = cur.execute(sql)
	for item in data:
		movies.append(item)
	cur.close()
	con.close()
	return render_template("template/movie.html",movies = movies)

@app.route("/score")
def score():
	score = []
	number = []
	con = sqlite3.connect("movie.db")
	cur = con.cursor()
	sql = "select score,count(score) from movie250 group by score"
	data = cur.execute(sql)
	for item in data:
		score.append(item[0])
		number.append(item[1])
	cur.close()
	con.close()
	return render_template("template/score.html", score = score, number = number)

# 生成词云图片
def makeWordCloud():
	# 准备词云所需的词
	con = sqlite3.connect('movie.db')
	cur = con.cursor()
	sql = 'select instroduction from movie250'
	data = cur.execute(sql)
	text = ""
	for item in data:
		text = text + item[0]
	cur.close()
	con.close()

	cut = jieba.cut(text)
	string = ' '.join(cut)

	filename = 'word_length.txt'
	with open(filename, 'w') as file:
		file.write(str(len(string)))
		file.close()

	img = Image.open(r'../static/assets/img/tree.jpg')
	img_arry = np.array(img) # 将图片转换成数组
	wc = WordCloud(
		background_color = 'white',
		mask = img_arry,
		font_path = 'STCAIYUN.TTF' # 字体锁在位置: C:\Windows\Fonts
		)
	wc.generate_from_text(string)

	# 绘制图片
	fig = plt.figure(1)
	plt.imshow(wc)
	plt.axis('off') # 是否显示坐标轴
	# plt.show() # 显示生成的词云图片

	# 输出词云图片到文件
	plt.savefig(r'../static/assets/img/word.jpg', dpi=800)
	plt.close()

@app.route("/word")
def word():
	return render_template("template/word.html")

@app.route("/team")
def team():
	return render_template("template/team.html")

if __name__ == '__main__':
	app.config.update(DEBUG=True)
	if not os.path.exists('movie.db'):
		get_douban_databses.main()
	if not os.path.exists('../static/assets/img/word.jpg'):
		makeWordCloud()
	app.run()

五、使用教程

  1. git clone https://gitee.com/jingluoonline/python_reptile.git
  2. cd python_reptile/flsk/apps
  3. 输入创建虚拟化境的命令virtualenv FlaskPath
  4. 进入虚拟环境FlaskPath\Scripts\activate.bat
  5. 安装相关依赖
    1. 其中wordcloud下载有时候会有问题,可以选择使用whl文件下载,网址https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud找到相应的包下载到本地,进行本地安装
  6. python index.py,有点慢,因为爬取数据和生成图片都是在初始化时
  7. 浏览器输入http://127.0.0.1:5000/

六、效果图

  1. 主页
    python爬取豆瓣电影Top250并进行数据分析_第1张图片
  2. 电影
    python爬取豆瓣电影Top250并进行数据分析_第2张图片
  3. 评分
    python爬取豆瓣电影Top250并进行数据分析_第3张图片
  4. 词云
    python爬取豆瓣电影Top250并进行数据分析_第4张图片
  5. 团队
    python爬取豆瓣电影Top250并进行数据分析_第5张图片

你可能感兴趣的:(flask)