从Java1.4开始, Java引入了non-blocking IO,简称NIO。NIO与传统socket最大的不同就是引入了Channel和多路复用selector的概念。传统的socket是基于stream的,它是单向的,有InputStream表示read和OutputStream表示写。而Channel是双工的,既支持读也支持写,channel的读/写都是面向Buffer。 NIO中引入的多路复用Selector机制(如果是linux系统,则应用的epoll事件通知机制)可使一个线程同时监听多个Channel上发生的事件。 虽然Java NIO相比于以往确实是一个大的突破,但是如果要真正上手进行开发,且想要开发出好的一个服务端网络程序,那么你得要花费一点功夫了,毕竟Java NIO只是提供了一大堆的API而已,对于一般的软件开发人员来说只能呵呵了。因此,社区中就涌现了很多基于Java NIO的网络应用框架,其中以Apache的Mina,以及Netty最为出名,从本篇开始我们将深入的分析一下Netty的内部实现细节 。
本系列是基于Netty4.1.18这个版本。
在分析源码之前,我们还是先看看Netty官方的样例代码,了解一下Netty一般是如何进行服务端及客户端开发的。
Netty服务端示例:
EventLoopGroup bossGroup = new NioEventLoopGroup(); // (1)
EventLoopGroup workerGroup = new NioEventLoopGroup();
try { ServerBootstrap b = new ServerBootstrap(); // (2) b.group(bossGroup, workerGroup) // (3) .channel(NioServerSocketChannel.class) // (4)
.handler(new LoggingHandler()) // (5) .childHandler(new ChannelInitializer() { // (6) @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new DiscardServerHandler()); } }) .option(ChannelOption.SO_BACKLOG, 128) // (7) .childOption(ChannelOption.SO_KEEPALIVE, true); // (8) // Bind and start to accept incoming connections. ChannelFuture f = b.bind(port).sync(); // (9) // Wait until the server socket is closed. // In this example, this does not happen, but you can do that to gracefully // shut down your server. f.channel().closeFuture().sync(); } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); }
上面这段代码展示了服务端的一个基本步骤:
(1)、 初始化用于Acceptor的主"线程池"以及用于I/O工作的从"线程池";
(2)、 初始化ServerBootstrap实例, 此实例是netty服务端应用开发的入口,也是本篇介绍的重点, 下面我们会深入分析;
(3)、 通过ServerBootstrap的group方法,设置(1)中初始化的主从"线程池";
(4)、 指定通道channel的类型,由于是服务端,故而是NioServerSocketChannel;
(5)、 设置ServerSocketChannel的处理器(此处不详述,后面的系列会进行深入分析)
(6)、 设置子通道也就是SocketChannel的处理器, 其内部是实际业务开发的"主战场"(此处不详述,后面的系列会进行深入分析)
(7)、 配置ServerSocketChannel的选项
(8)、 配置子通道也就是SocketChannel的选项
(9)、 绑定并侦听某个端口
接着,我们再看看客户端是如何开发的:
Netty客户端示例:
public class TimeClient { public static void main(String[] args) throws Exception { String host = args[0]; int port = Integer.parseInt(args[1]); EventLoopGroup workerGroup = new NioEventLoopGroup(); // (1) try { Bootstrap b = new Bootstrap(); // (2) b.group(workerGroup); // (3) b.channel(NioSocketChannel.class); // (4) b.option(ChannelOption.SO_KEEPALIVE, true); // (5) b.handler(new ChannelInitializer() { // (6) @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new TimeClientHandler()); } }); // Start the client. ChannelFuture f = b.connect(host, port).sync(); // (7) // Wait until the connection is closed. f.channel().closeFuture().sync(); } finally { workerGroup.shutdownGracefully(); } } }
客户端的开发步骤和服务端都差不多:
(1)、 初始化用于连接及I/O工作的"线程池";
(2)、 初始化Bootstrap实例, 此实例是netty客户端应用开发的入口,也是本篇介绍的重点, 下面我们会深入分析;
(3)、 通过Bootstrap的group方法,设置(1)中初始化的"线程池";
(4)、 指定通道channel的类型,由于是客户端,故而是NioSocketChannel;
(5)、 设置SocketChannel的选项(此处不详述,后面的系列会进行深入分析);
(6)、 设置SocketChannel的处理器, 其内部是实际业务开发的"主战场"(此处不详述,后面的系列会进行深入分析);
(7)、 连接指定的服务地址;
通过对上面服务端及客户端代码分析,Bootstrap是Netty应用开发的入口,如果想要理解Netty内部的实现细节,那么有必要先了解一下Bootstrap内部的实现机制。
首先我们先看一下ServerBootstrap及Bootstrap的类继承结构图:
通过类图我们知道AbstractBootstrap类是ServerBootstrap及Bootstrap的基类,我们先看一下AbstractBootstrap类的主要代码:
public abstract class AbstractBootstrapextends AbstractBootstrap, C extends Channel> implements Cloneable { volatile EventLoopGroup group; private volatile ChannelFactory extends C> channelFactory; private final Map, Object> options = new LinkedHashMap , Object>(); private final Map , Object> attrs = new LinkedHashMap , Object>(); private volatile ChannelHandler handler; public B group(EventLoopGroup group) { if (group == null) { throw new NullPointerException("group"); } if (this.group != null) { throw new IllegalStateException("group set already"); } this.group = group; return self(); } private B self() { return (B) this; } public B channel(Class extends C> channelClass) { if (channelClass == null) { throw new NullPointerException("channelClass"); } return channelFactory(new ReflectiveChannelFactory (channelClass)); } @Deprecated public B channelFactory(ChannelFactory extends C> channelFactory) { if (channelFactory == null) { throw new NullPointerException("channelFactory"); } if (this.channelFactory != null) { throw new IllegalStateException("channelFactory set already"); } this.channelFactory = channelFactory; return self(); } public B channelFactory(io.netty.channel.ChannelFactory extends C> channelFactory) { return channelFactory((ChannelFactory ) channelFactory); } public B option(ChannelOption option, T value) { if (option == null) { throw new NullPointerException("option"); } if (value == null) { synchronized (options) { options.remove(option); } } else { synchronized (options) { options.put(option, value); } } return self(); } public B attr(AttributeKey key, T value) { if (key == null) { throw new NullPointerException("key"); } if (value == null) { synchronized (attrs) { attrs.remove(key); } } else { synchronized (attrs) { attrs.put(key, value); } } return self(); } public B validate() { if (group == null) { throw new IllegalStateException("group not set"); } if (channelFactory == null) { throw new IllegalStateException("channel or channelFactory not set"); } return self(); } public ChannelFuture bind(int inetPort) { return bind(new InetSocketAddress(inetPort)); } public ChannelFuture bind(SocketAddress localAddress) { validate(); if (localAddress == null) { throw new NullPointerException("localAddress"); } return doBind(localAddress); } private ChannelFuture doBind(final SocketAddress localAddress) { final ChannelFuture regFuture = initAndRegister(); final Channel channel = regFuture.channel(); if (regFuture.cause() != null) { return regFuture; } if (regFuture.isDone()) { // At this point we know that the registration was complete and successful. ChannelPromise promise = channel.newPromise(); doBind0(regFuture, channel, localAddress, promise); return promise; } else { // Registration future is almost always fulfilled already, but just in case it's not. final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel); regFuture.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { Throwable cause = future.cause(); if (cause != null) { // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an // IllegalStateException once we try to access the EventLoop of the Channel. promise.setFailure(cause); } else { // Registration was successful, so set the correct executor to use. // See https://github.com/netty/netty/issues/2586 promise.registered(); doBind0(regFuture, channel, localAddress, promise); } } }); return promise; } } final ChannelFuture initAndRegister() { Channel channel = null; try { channel = channelFactory.newChannel(); init(channel); } catch (Throwable t) { if (channel != null) { // channel can be null if newChannel crashed (eg SocketException("too many open files")) channel.unsafe().closeForcibly(); } // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t); } ChannelFuture regFuture = config().group().register(channel); if (regFuture.cause() != null) { if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } return regFuture; } abstract void init(Channel channel) throws Exception; private static void doBind0( final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise) { // This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up // the pipeline in its channelRegistered() implementation. channel.eventLoop().execute(new Runnable() { @Override public void run() { if (regFuture.isSuccess()) { channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE); } else { promise.setFailure(regFuture.cause()); } } }); } public B handler(ChannelHandler handler) { if (handler == null) { throw new NullPointerException("handler"); } this.handler = handler; return self(); }public abstract AbstractBootstrapConfig config(); }
现在我们以示例代码为出发点,来详细分析一下引导类内部实现细节:
1、 首先看看服务端的b.group(bossGroup, workerGroup):
调用ServerBootstrap的group方法,设置react模式的主线程池 以及 IO 操作线程池,ServerBootstrap中的group代码如下:
public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) { super.group(parentGroup); if (childGroup == null) { throw new NullPointerException("childGroup"); } if (this.childGroup != null) { throw new IllegalStateException("childGroup set already"); } this.childGroup = childGroup; return this; }
在group方法中,会继续调用父类的group方法,而通过类继承图我们知道,super.group(parentGroup)其实调用的就是AbstractBootstrap的group方法。AbstractBootstrap中group代码如下:
public B group(EventLoopGroup group) { if (group == null) { throw new NullPointerException("group"); } if (this.group != null) { throw new IllegalStateException("group set already"); } this.group = group; return self(); }
通过以上分析,我们知道了AbstractBootstrap中定义了主线程池group的引用,而子线程池childGroup的引用是定义在ServerBootstrap中。
当我们查看客户端Bootstrap的group方法时,我们发现,其是直接调用的父类AbstractBoostrap的group方法。
2、示例代码中的 channel()方法
无论是服务端还是客户端,channel调用的都是基类的channel方法,其实现细节如下:
public B channel(Class extends C> channelClass) { if (channelClass == null) { throw new NullPointerException("channelClass"); } return channelFactory(new ReflectiveChannelFactory(channelClass)); }
public B channelFactory(ChannelFactory extends C> channelFactory) { if (channelFactory == null) { throw new NullPointerException("channelFactory"); } if (this.channelFactory != null) { throw new IllegalStateException("channelFactory set already"); } this.channelFactory = channelFactory; return self(); }
我们发现,其实channel方法内部,只是初始化了一个用于生产指定channel类型的工厂实例。
3、option / handler / attr 方法
option: 设置通道的选项参数, 对于服务端而言就是ServerSocketChannel, 客户端而言就是SocketChannel;
handler: 设置主通道的处理器, 对于服务端而言就是ServerSocketChannel,也就是用来处理Acceptor的操作;
对于客户端的SocketChannel,主要是用来处理 业务操作;
attr: 设置通道的属性;
option / handler / attr方法都定义在AbstractBootstrap中, 所以服务端和客户端的引导类方法调用都是调用的父类的对应方法。
4、childHandler / childOption / childAttr 方法(只有服务端ServerBootstrap才有child类型的方法)
对于服务端而言,有两种通道需要处理, 一种是ServerSocketChannel:用于处理用户连接的accept操作, 另一种是SocketChannel,表示对应客户端连接。而对于客户端,一般都只有一种channel,也就是SocketChannel。
因此以child开头的方法,都定义在ServerBootstrap中,表示处理或配置服务端接收到的对应客户端连接的SocketChannel通道。
childHandler / childOption / childAttr 在ServerBootstrap中的对应代码如下:
public ServerBootstrap childHandler(ChannelHandler childHandler) { if (childHandler == null) { throw new NullPointerException("childHandler"); } this.childHandler = childHandler; return this; }
publicServerBootstrap childOption(ChannelOption childOption, T value) { if (childOption == null) { throw new NullPointerException("childOption"); } if (value == null) { synchronized (childOptions) { childOptions.remove(childOption); } } else { synchronized (childOptions) { childOptions.put(childOption, value); } } return this; }
publicServerBootstrap childAttr(AttributeKey childKey, T value) { if (childKey == null) { throw new NullPointerException("childKey"); } if (value == null) { childAttrs.remove(childKey); } else { childAttrs.put(childKey, value); } return this; }
至此,引导类的属性配置都设置完毕了。
本篇总结:
1、服务端由两种线程池,用于Acceptor的React主线程和用于I/O操作的React从线程池; 客户端只有用于连接及IO操作的React的主线程池;
2、ServerBootstrap中定义了服务端React的"从线程池"对应的相关配置,都是以child开头的属性。 而用于"主线程池"channel的属性都定义在AbstractBootstrap中;
本篇只是简单介绍了一下引导类的配置属性, 下一篇我将详细介绍服务端引导类的Bind过程分析。