卡尔曼滤波matlab仿真

一、温度测量

[plain]  view plain  copy
  1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  2. % 程序说明:Kalman滤波用于温度测量的实例(一维)      
  3. function main    
  4. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  5. %初始化参数  
  6. N=120;  %采样点个数  
  7. A=1;    
  8. B=1;    
  9. H=1;   
  10. Q=0.01;    
  11. R=0.25;    
  12. W=sqrt(Q)*randn(1,N);    
  13. V=sqrt(R)*randn(1,N);    
  14. CON=25;  %温度真实值  
  15. %分配空间  
  16. X=zeros(1,N);      
  17. Z=zeros(1,N);   
  18. Xkf=zeros(1,N);    
  19. P=zeros(1,N);     
  20. X(1)=25.1;    
  21. P(1)=0.01;    
  22. Z(1)=24.9;    
  23. Xkf(1)=Z(1);    
  24. I=eye(1);     
  25. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
  26. %kalman过程  
  27. for k=2:N    
  28.     X(k)=A*X(k-1)+B*W(k);     
  29.     Z(k)=H*X(k)+V(k);    
  30.     X_pre(k)=A*Xkf(k-1);               
  31.     P_pre(k)=A*P(k-1)*A'+Q;            
  32.     Kg=P_pre(k)/(H*P_pre(k)*H'+R);               
  33.     Xkf(k)=X_pre(k)+Kg*(Z(k)-H*X_pre(k));             
  34.     P(k)=(I-Kg*H)*P_pre(k);    
  35. end    
  36. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  37. %误差过程  
  38. Err_Messure=zeros(1,N);    
  39. Err_Kalman=zeros(1,N);    
  40. for k=1:N    
  41.     Err_Messure(k)=Z(k)-X(k);    
  42.     Err_Kalman(k)=Xkf(k)-X(k);    
  43. end    
  44. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  45. t=1:N;    
  46. figure;    
  47. plot(t,CON*ones(1,N),'-b',t,X,'-r',t,Z,'g+',t,Xkf,'-k');    
  48. legend('期望值','真实值','测量值','kalman估计值');             
  49. xlabel('采样时间');    
  50. ylabel('温度');    
  51. title('Kalman Filter Simulation');    
  52. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  53. figure;    
  54. plot(t,Err_Messure,'-b',t,Err_Kalman,'-k');    
  55. legend('测量误差','kalman误差');             
  56. xlabel('采样时间');    
  57. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%empt  
卡尔曼滤波matlab仿真_第1张图片 卡尔曼滤波matlab仿真_第2张图片

二、自由落体追踪(二维x,v)

[plain]  view plain  copy
  1. %kalman滤波用于自由落体运动目标追踪(二维,x,v)  
  2. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  3. %初始化参数  
  4. N=1000;  
  5. Q=[0,0;0,0];  
  6. R=0.5;  
  7. w=sqrt(Q)*randn(2,N);  
  8. v=sqrt(R)*randn(1,N);  
  9. A=[1,1;0,1];%状态转移矩阵  
  10. B=[0.5;1];%控制矩阵  
  11. U=-10;%控制变量  
  12. H=[1,0];%观测矩阵  
  13. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  14. %分配空间,x,p0,z,xkf  
  15. x=zeros(2,N);%物体真实状态  
  16. x(:,1)=[95;1];%初始位移和速度  
  17. p0=[10,0;0,1];%初始误差  
  18. z=zeros(1,N);%观测值  
  19. z(1)=H*x(:,1);%观测真实值,第一列的列向量,  
  20. xkf=zeros(2,N);%kalman估计状态  
  21. xkf(:,1)=x(:,1);%kalman估计状态初始化,第一列的列向量,  
  22. err_p=zeros(N,2);  
  23. err_p(1,1)=p0(1,1);  
  24. err_p(1,2)=p0(2,2);  
  25. I=eye(2);%2*2单位矩阵表明二维系统  
  26. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  27. %kalman迭代过程  
  28. for k=2:N;  
  29.     x(:,k)=A*x(:,k-1)+B*U+w(k);%模型  
  30.     z(k)=H*x(:,k)+v(k);%模型  
  31.     x_pre=A*xkf(:,k-1)+B*U;%①  
  32.     p_pre=A*p0*A'+Q;%②  
  33.     kg=p_pre*H'/(H*p_pre*H'+R);%③  
  34.     xkf(:,k)=x_pre+kg*(z(k)-H*x_pre);%④  
  35.     p0=(I-kg*H)*p_pre;%⑤  
  36.     err_p(k,1)=p0(1,1);%位移误差均方值  
  37.     err_p(k,2)=p0(2,2);%速度误差均方值  
  38. end  
  39. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  40. %误差计算  
  41. messure_err_x=zeros(1,N);  
  42. kalman_err_x=zeros(1,N);  
  43. kalman_err_v=zeros(1,N);  
  44. for k=1:N  
  45.     messure_err_x(k)=z(k)-x(1,k);%位移的测量误差  
  46.     kalman_err_x(k)=xkf(1,k)-x(1,k);%kalman估计位移与真实位移之间偏差  
  47.     kalman_err_v(k)=xkf(2,k)-x(2,k);%kalman估计速度与真实速度之间偏差  
  48. end  
  49. %噪声图  
  50. figure;  
  51. plot(w);xlabel('采样时间');ylabel('过程噪声');  
  52. figure;  
  53. plot(v);xlabel('采样时间');ylabel('测量噪声');  
  54. %位置误差  
  55. figure;  
  56. hold on,box on;  
  57. plot(messure_err_x,'-r.');  
  58. plot(kalman_err_x,'-g.');  
  59. legend('测量位置','kalman估计位置');  
  60. xlabel('采样时间');ylabel('位置偏差');  
  61. %kalman速度偏差  
  62. figure;  
  63. plot(kalman_err_v);  
  64. xlabel('采样时间');ylabel('速度偏差');  
  65. %均方值  
  66. figure;  
  67. plot(err_p(:,1));  
  68. xlabel('采样时间');ylabel('位移误差均方值');  
  69. figure;  
  70. plot(err_p(:,1));  
  71. xlabel('采样时间');ylabel('速度误差均方值');  
卡尔曼滤波matlab仿真_第3张图片

卡尔曼滤波matlab仿真_第4张图片


三、GPS导航定位

[plain]  view plain  copy
  1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  2. %  Kalman滤波在船舶GPS导航定位系统中的应用(四维,x方向x,v   ,y方向x,v; )   
  3. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  4. function main    
  5. T=1;  %采样周期  
  6. N=80/T;  %总的采样次数  
  7. F=[1,T,0,0;0,1,0,0;0,0,1,T;0,0,0,1];    
  8. H=[1,0,0,0;0,0,1,0];    
  9. Q=4e-4  ;  
  10. R=100*eye(2);  
  11. X=zeros(4,N);    
  12. X(:,1)=[100,2,200,20]; %x四维,初始位置(-100,200)水平速度2,垂直速度20   
  13. Z=zeros(2,N);    
  14. Z(:,1)=[X(1,1),X(3,1)];  %z只观测到位置,没有速度  
  15. Xkf=zeros(4,N);    
  16. Xkf(:,1)=X(:,1);    
  17. P0=eye(4);  %协方差矩阵初始化,4*4单位矩阵  
  18. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  19. for t=2:N  %模型  
  20.     X(:,t)=F*X(:,t-1)+sqrt(Q)*randn(4,1);%目标真实轨迹  randn(4,1)4*1随机矩阵  
  21.     Z(:,t)=H*X(:,t)+sqrt(R)*randn(2,1); %观测轨迹randn(2,1)2*1随机矩阵  
  22. end    
  23. for i=2:N    
  24.     X_pre=F*Xkf(:,i-1);    
  25.     P_pre=F*P0*F'+Q;    
  26.     K=P_pre*H'/(H*P_pre*H'+R);    
  27.     Xkf(:,i)=X_pre+K*(Z(:,i)-H*X_pre);    
  28.     P0=(eye(4)-K*H)*P_pre;    
  29. end    
  30. for i=1:N    
  31.     Err_Observation(i)=RMS(X(:,i),Z(:,i));    
  32.     Err_KalmanFilter(i)=RMS(X(:,i),Xkf(:,i));    
  33. end    
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  35. figure;    
  36. hold on;box on;    
  37. plot(X(1,:),X(3,:),'-k');  %位置轨迹  
  38. plot(Z(1,:),Z(2,:),'-b.');  %观测轨迹  
  39. plot(Xkf(1,:),Xkf(3,:),'-r+');  %Kalman估计轨迹  
  40. legend('真实轨迹','观测轨迹','滤波轨迹')    
  41. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
  42. figure;    
  43. hold on; box on;    
  44. plot(Err_Observation,'-ko','MarkerFace','g')    
  45. plot(Err_KalmanFilter,'-ks','MarkerFace','r')    
  46. legend('滤波前误差','滤波后误差')    
  47. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  48. function dist=RMS(X1,X2);    
  49. if length(X2)<=2    
  50.     dist=sqrt( (X1(1)-X2(1))^2 + (X1(3)-X2(2))^2 );    
  51. else    
  52.     dist=sqrt( (X1(1)-X2(1))^2 + (X1(3)-X2(3))^2 );    
  53. end    
  54. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

卡尔曼滤波matlab仿真_第5张图片

卡尔曼滤波matlab仿真_第6张图片

转载于https://blog.csdn.net/try_again_later/article/details/78304691

你可能感兴趣的:(卡尔曼滤波matlab仿真)