计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字

一、卷积神经网络的原理

原理部分参考自:https://www.cnblogs.com/chensheng-zhou/p/6380738.html

1、关于卷积神经网络

   卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。

   CNNs是受早期的延时神经网络(TDNN)的影响。延时神经网络通过在时间维度上共享权值降低学习复杂度,适用于语音和时间序列信号的处理。

   CNNs是第一个真正成功训练多层网络结构的学习算法。它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。

2、卷积神经网络的网络结构

   卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第1张图片

   输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如上图,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

    一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。

   此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。

3、典型的用来识别数字的卷积网络---LeNet-5

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第2张图片

        LeNet-5共有7层,不包含输入,每层都包含可训练参数(连接权重)。输入图像为32*32大小。这要比Mnist数据库(一个公认的手写数据库)中最大的字母还大。这样做的原因是希望潜在的明显特征如笔画断电或角点能够出现在最高层特征监测子感受野的中心。

        我们先要明确一点:每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征,然后每个Feature Map有多个神经元。

        C1层是一个卷积层(为什么是卷积?卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音),由6个特征图Feature Map构成。特征图中每个神经元与输入中5*5的邻域相连。特征图的大小为28*28,这样能防止输入的连接掉到边界之外(是为了BP反馈时的计算,不致梯度损失,个人见解)。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共156*(28*28)=122,304个连接。

       S2层是一个下采样层(为什么是下采样?利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息),有6个14*14的特征图。特征图中的每个单元与C1中相对应特征图的2*2邻域相连接。S2层每个单元的4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid函数计算。可训练系数和偏置控制着sigmoid函数的非线性程度。如果系数比较小,那么运算近似于线性运算,亚采样相当于模糊图像。如果系数比较大,根据偏置的大小亚采样可以被看成是有噪声的“或”运算或者有噪声的“与”运算。每个单元的2*2感受野并不重叠,因此S2中每个特征图的大小是C1中特征图大小的1/4(行和列各1/2)。S2层有12个可训练参数和5880个连接。

---->6个2*2的小方框,每个有一个参数,加上一个偏置,也就是(1+1)*6=12个可训练参数

---->对于S2层的每一个图的每一个点,连接数是(2*2+1)=5,总共是14*14*6*(2*2+1)=5880个连接

二、代码

1、Mnist手写体训练+测试


#coding:utf8
import os 
import cv2 
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

sess = tf.InteractiveSession()

def getTrain():
    train=[[],[]] # 指定训练集的格式,一维为输入数据,一维为其标签
    # 读取所有训练图像,作为训练集
    train_root="mnist_train" 
    labels = os.listdir(train_root)
    for label in labels:
        imgpaths = os.listdir(os.path.join(train_root,label))
        for imgname in imgpaths:
            img = cv2.imread(os.path.join(train_root,label,imgname),0)
            array = np.array(img).flatten() # 将二维图像平铺为一维图像
            array=MaxMinNormalization(array)
            train[0].append(array)
            label_ = [0,0,0,0,0,0,0,0,0,0]
            label_[int(label)] = 1
            train[1].append(label_)
    train = shuff(train)
    return train
 

def getTest():
    test=[[],[]] # 指定训练集的格式,一维为输入数据,一维为其标签
    # 读取所有训练图像,作为训练集
    test_root="mnist_test" 
    labels = os.listdir(test_root)
    for label in labels:
        imgpaths = os.listdir(os.path.join(test_root,label))
        for imgname in imgpaths:
            img = cv2.imread(os.path.join(test_root,label,imgname),0)
            array = np.array(img).flatten() # 将二维图像平铺为一维图像
            array=MaxMinNormalization(array)
            test[0].append(array)
            label_ = [0,0,0,0,0,0,0,0,0,0]
            label_[int(label)] = 1
            test[1].append(label_)
    test = shuff(test)
    return test[0],test[1]

 
def shuff(data):
    temp=[]
    for i in range(len(data[0])):
        temp.append([data[0][i],data[1][i]])
    import random
    random.shuffle(temp)
    data=[[],[]]
    for tt in temp:
        data[0].append(tt[0])
        data[1].append(tt[1])
    return data
 

count = 0
def getBatchNum(batch_size,maxNum):
    global count
    if count ==0:
        count=count+batch_size
        return 0,min(batch_size,maxNum)
    else:
        temp = count
        count=count+batch_size
        if min(count,maxNum)==maxNum:
            count=0
            return getBatchNum(batch_size,maxNum)
        return temp,min(count,maxNum)

    
def MaxMinNormalization(x):
    x = (x - np.min(x)) / (np.max(x) - np.min(x))
    return x
 

# 1、权重初始化,偏置初始化
# 为了创建这个模型,我们需要创建大量的权重和偏置项
# 为了不在建立模型的时候反复操作,定义两个函数用于初始化
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)#正太分布的标准差设为0.1
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

# 2、卷积层和池化层也是接下来要重复使用的,因此也为它们定义创建函数
# tf.nn.conv2d是Tensorflow中的二维卷积函数,参数x是输入,w是卷积的参数
# strides代表卷积模块移动的步长,都是1代表会不遗漏地划过图片的每一个点,padding代表边界的处理方式
# padding = 'SAME',表示padding后卷积的图与原图尺寸一致,激活函数relu()
# tf.nn.max_pool是Tensorflow中的最大池化函数,这里使用2 * 2 的最大池化,即将2 * 2 的像素降为1 * 1的像素
# 最大池化会保留原像素块中灰度值最高的那一个像素,即保留最显著的特征,因为希望整体缩小图片尺寸
# ksize:池化窗口的大小,取一个四维向量,一般是[1,height,width,1]
# 因为我们不想再batch和channel上做池化,一般也是[1,stride,stride,1]
def conv2d(x, w):
    return tf.nn.conv2d(x, w, strides=[1,1,1,1],padding='SAME') # 保证输出和输入是同样大小
def max_pool_2x2(x):
   return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME')

    
iterNum = 1000
batch_size=1024
 

print("load train dataset.")
train=getTrain()
print("load test dataset.")
test0,test1=getTest()
 

 

# 3、参数
# 这里的x,y_并不是特定的值,它们只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值
# 输入图片x是一个2维的浮点数张量,这里分配给它的shape为[None, 784],784是一张展平的MNIST图片的维度
# None 表示其值的大小不定,在这里作为第1个维度值,用以指代batch的大小,means x 的数量不定
# 输出类别y_也是一个2维张量,其中每一行为一个10维的one_hot向量,用于代表某一MNIST图片的类别
x = tf.placeholder(tf.float32, [None,784], name="x-input")
y_ = tf.placeholder(tf.float32,[None,10]) # 10列


 

# 4、第一层卷积,它由一个卷积接一个max pooling完成
# 张量形状[5,5,1,32]代表卷积核尺寸为5 * 5,1个颜色通道,32个通道数目
w_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32]) # 每个输出通道都有一个对应的偏置量
# 我们把x变成一个4d 向量其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(灰度图的通道数为1,如果是RGB彩色图,则为3)
x_image = tf.reshape(x,[-1,28,28,1])
# 因为只有一个颜色通道,故最终尺寸为[-1,28,28,1],前面的-1代表样本数量不固定,最后的1代表颜色通道数量
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) # 使用conv2d函数进行卷积操作,非线性处理
h_pool1 = max_pool_2x2(h_conv1)                          # 对卷积的输出结果进行池化操作


 

# 5、第二个和第一个一样,是为了构建一个更深的网络,把几个类似的堆叠起来
# 第二层中,每个5 * 5 的卷积核会得到64个特征
w_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)# 输入的是第一层池化的结果
h_pool2 = max_pool_2x2(h_conv2)
 

# 6、密集连接层
# 图片尺寸减小到7 * 7,加入一个有1024个神经元的全连接层,
# 把池化层输出的张量reshape(此函数可以重新调整矩阵的行、列、维数)成一些向量,加上偏置,然后对其使用Relu激活函数
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1,7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)


# 7、使用dropout,防止过度拟合
# dropout是在神经网络里面使用的方法,以此来防止过拟合
# 用一个placeholder来代表一个神经元的输出
# tf.nn.dropout操作除了可以屏蔽神经元的输出外,
# 还会自动处理神经元输出值的scale,所以用dropout的时候可以不用考虑scale
keep_prob = tf.placeholder(tf.float32, name="keep_prob")# placeholder是占位符
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


 

# 8、输出层,最后添加一个softmax层
w_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2, name="y-pred")


 

# 9、训练和评估模型
# 损失函数是目标类别和预测类别之间的交叉熵
# 参数keep_prob控制dropout比例,然后每100次迭代输出一次日志
cross_entropy = tf.reduce_sum(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 预测结果与真实值的一致性,这里产生的是一个bool型的向量
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# 将bool型转换成float型,然后求平均值,即正确的比例
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 初始化所有变量,在2017年3月2号以后,用 tf.global_variables_initializer()替代tf.initialize_all_variables()
sess.run(tf.initialize_all_variables())


# 保存最后一个模型
saver = tf.train.Saver(max_to_keep=1)
 

 

for i in range(iterNum):
    for j in range(int(len(train[1])/batch_size)):
        imagesNum=getBatchNum(batch_size,len(train[1]))
        batch = [train[0][imagesNum[0]:imagesNum[1]],train[1][imagesNum[0]:imagesNum[1]]]
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    if i % 2 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1],keep_prob: 1.0})
        print("Step %d ,training accuracy %g" % (i, train_accuracy))
print("test accuracy %f " % accuracy.eval(feed_dict={x: test0, y_:test1, keep_prob: 1.0})) 
# 保存模型于文件夹
saver.save(sess,"save/model")

2、预测结果可视化


import tensorflow as tf
import numpy as np
import tkinter as tk
from tkinter import filedialog
from PIL import Image, ImageTk
from tkinter import filedialog
import time

 

def creat_windows():
    win = tk.Tk() # 创建窗口
    sw = win.winfo_screenwidth()
    sh = win.winfo_screenheight()
    ww, wh = 400, 450
    x, y = (sw-ww)/2, (sh-wh)/2
    win.geometry("%dx%d+%d+%d"%(ww, wh, x, y-40)) # 居中放置窗口
 

    win.title('手写体识别') # 窗口命名 

    bg1_open = Image.open("timg.jpg").resize((300, 300))
    bg1 = ImageTk.PhotoImage(bg1_open)
    canvas = tk.Label(win, image=bg1)
    canvas.pack()
 

 
    var = tk.StringVar() # 创建变量文字
    var.set('')
    tk.Label(win, textvariable=var, bg='#C1FFC1', font=('宋体', 21), width=20, height=2).pack()
 

    tk.Button(win, text='选择图片', width=20, height=2, bg='#FF8C00', command=lambda:main(var, canvas), font=('圆体', 10)).pack()
    

    win.mainloop()
 

def main(var, canvas):
    file_path = filedialog.askopenfilename()
    bg1_open = Image.open(file_path).resize((28, 28))
    pic = np.array(bg1_open).reshape(784,)
    bg1_resize = bg1_open.resize((300, 300))
    bg1 = ImageTk.PhotoImage(bg1_resize)
    canvas.configure(image=bg1)
    canvas.image = bg1
 

    init = tf.global_variables_initializer()
 

    with tf.Session() as sess:
            sess.run(init)
            saver = tf.train.import_meta_graph('save/model.meta')  # 载入模型结构
            saver.restore(sess, 'save/model')  # 载入模型参数
            graph = tf.get_default_graph()       # 加载计算图
            x = graph.get_tensor_by_name("x-input:0")  # 从模型中读取占位符变量
            keep_prob = graph.get_tensor_by_name("keep_prob:0")
            y_conv = graph.get_tensor_by_name("y-pred:0")  # 关键的一句  从模型中读取占位符变量
            prediction = tf.argmax(y_conv, 1)
            predint = prediction.eval(feed_dict={x: [pic], keep_prob: 1.0}, session=sess)  # feed_dict输入数据给placeholder占位符
            answer = str(predint[0])
    var.set("预测的结果是:" + answer)
 

if __name__ == "__main__":
    creat_windows()

3、制作测试图片

我们的模型需要输入的是28 X 28像素的手写体数字灰度图片,图片像素可以在PS或者画图中直接更改像素大小,关于把图片更改为灰度图的代码如下:

from PIL import Image
import os
 

input_dir = ''  //此处为自己手写体文字的存放文件夹路径
out_dir = ''  //此处为转化为灰度图后存放的路径
a = os.listdir(input_dir)
 

for i in a:
    print(i)
    I = Image.open(input_dir+i)
    L = I.convert('L')
    L.save(out_dir+i)

三、运行结果

识别的手写体我是直接在画图上面画了几个数字出来,扔进代码跑出的结果如下

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第3张图片计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第4张图片

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第5张图片计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第6张图片

关于识别错误的问题分析

可能原因1:

用小方块绘制测试图片,可是发现正确率很低,很容易出错,比如下图:

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第7张图片

 

因为MNIST是手写体文字,手写体处理后的每个像素储存的值输出:

而机器化数字处理后的每个像素储存的值输出:

显而易见,错误率是由于测试图片不对导致的
我们训练的MNIST注意是手写体,手写体并不是我画的图那样只存在0和1两个数值,而是处在0~1之间的一个值

可能原因2:

西方手写体和东方手写体

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第8张图片

计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字_第9张图片

 

 

 

 

你可能感兴趣的:(计算机视觉)