从Hadoop到Spark,看大数据框架的前世今生!

谈到大数据框架,不得不提Hadoop和 Spark,今天我们进行历史溯源,帮助大家了解Hadoop和Spark的过去,感应未来。

在Hadoop出现前人们采用什么计算模型呢?是典型的高性能HPC workflow,它有专门负责计算的compute cluster,cluster memory很小,所以计算产生的任何数据会存储在storage中,最后在Tape里进行备份,这种workflow主要适用高速大规模复杂计算,像核物理模拟中会用到。

从Hadoop到Spark,看大数据框架的前世今生!_第1张图片

HPC workflow在实际应用中存在一些问题,这些问题促进了Hadoop的出现。

首先如果想对大量进行简单计算,比如对Search logs 进行“what are the popular keywords”计算,这时是否可以用HPC workflow?当然可以,但却并不适合,因为需要做的计算非常简单,并不需要在 high performance compute cluster中进行。

其次由于数据量大,HPC workflow是I/O bound,计算时间只有1个微秒,但剩下的100个微秒可能都需要等数据,这时候compute cluster就会非常空闲,因此HPC同样不不适用于 specific use。

在这里我还是要推荐下我自己建的大数据学习交流qq裙:458345782, 裙 里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴。

另外HPC主要在政府部门、科研等领域使用,成本高昂,不适合广泛推广。

如果不能把数据移到计算的地方,那为什么不转换思维,把计算移到数据里呢?

所以Google在2003至2006年发表了著名的三大论文——GFS、BigTable、MapReduce,解决怎么样让framework 挪到有数据的地方去做,解决了数据怎么存储,计算及访问的问题。

在Google 发出三大论文后,Yahoo用相同的框架开发出JAVA语言的project,这就是Hadoop。Hadoop Ecosystem在十年多时间发展的如火如荼,其核心就是HDFS,Mapreduce和Hbase。

从Hadoop到Spark,看大数据框架的前世今生!_第2张图片

HDFS很好地实现了数据存储的以下特性要求:

Cheap

High availability

High throughput

High scalability

Failure detection and recovery

从Hadoop到Spark,看大数据框架的前世今生!_第3张图片

大家从图中可以看到HDFS数据读取和写入的过程,这个Architecture非常稳定,当数据量越来越大时Namenode从一个发展为多个,使内存增大,产生了Namenode Federation。

从Hadoop到Spark,看大数据框架的前世今生!_第4张图片

数据存储已经实现,那如何进行计算呢?

如果有1PB size log,当需要计数时, 一个machine肯定无法计算海量数据,这时候可能需要写Multi-threads code,但也会存在进程坏了,性能不稳定等问题,如果Data Scientist还要写multi-threats程序是非常浪费时间的,这时候Mapreduce 就应运而生,目的是让framework代替人来处理复杂问题,使人集中精力到重要的数据分析过程中,只需要通过code Map和Reduce就可以实现数据运算。

从Hadoop到Spark,看大数据框架的前世今生!_第5张图片

让我们来思考下:在一次Mapreduce中至少需写硬盘几次?

至少3次!

开始从HDFS中读取数据,在Mapreduce中计算,再写回HDFS作为 Intermediate data,继续把数据读出来做reduce,最后再写回HDFS,很多时候做meachine learning需要不断迭代,一次程序无法算出最终结果,需要不断循环。

循环过程一直往硬盘里写,效率非常低,如果把中间数据写入内存,可以极大提高性能,于是Spark出现了

从Hadoop到Spark,看大数据框架的前世今生!_第6张图片

当把数据从HDFS中读出来到内存中,通过spark分析,Intermediate data再存到内存,继续用spark进行分析,不断进行循环,这样Spark会很大地提高计算速度。


Spark在2009年由AMPLab开发,吸取了很多Hadoop发展的经验教训,比如Hadoop对其他语言支持不够,Spark提供了Java,Scala,Python,R这些广泛受到Data Scientist欢迎的语言

从Hadoop到Spark,看大数据框架的前世今生!_第7张图片

那Spark与Hadoop的区别有什么?

Spark比Hadoop使用更简单

Spark对数据科学家更友好(Interactive shell)

Spark有更多的API/language支持(Java, python, scala)

从Hadoop到Spark,看大数据框架的前世今生!_第8张图片

你可能感兴趣的:(从Hadoop到Spark,看大数据框架的前世今生!)