spark实现不同班级不同学科的总成绩统计-scala

spark实现不同班级不同学科的总成绩统计-scala

  • 1. The first,创建一个scala project in idea for mac
  • 2. 模拟创建各班各科成绩的信息数据
  • 3. 针对上面的数据进行分析
  • 4. 程序的运行结果如下

1. The first,创建一个scala project in idea for mac

当前IDEA中使用的SPARK包是:spark-assembly-1.5.1-hadoop2.4.0
因此SparkSQL使用比较老的类:SQLContext 现在应该用:SparkSession
为了使用方便直接在object的main方法中编写代码来实现,首先添加要引用的包
在主函数中,首先要初始化我们要用到的spark相关的变量信息

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions.{sum}

object Xuan {
  def main(args: Array[String]): Unit = {
      val conf = new SparkConf().setAppName("Xual").setMaster("local")
      val ss   = new SparkContext(conf)
      val spark= new SQLContext(ss)//也可以用SparkSession.Builder()
      
      //因为代码中要用到agg函数做聚合,因此需要导入隐式转换包
      import spark.implicits._

  }
}

2. 模拟创建各班各科成绩的信息数据

  //统计用的模拟数据,每个班级各科考试总分数 C1:一班  S1:科目1
    val scores = Array(
      "C1,S1,78","C1,S2,59","C1,S1,99","C1,S2,70","C1,S1,39","C1,S2,71","C1,S3,60","C1,S3,90","C1,S3,55",
      "C2,S2,90","C2,S1,60","C2,S1,70","C2,S1,73","C2,S2,80","C2,S2,70","C2,S3,48","C2,S3,80","C2,S3,70",
      "C3,S2,66","C3,S1,68","C3,S1,88","C3,S1,72","C3,S2,80","C3,S2,80","C3,S3,52","C3,S3,80","C3,S3,99"
    )

3. 针对上面的数据进行分析

完整代码如下

    //将测试数据生成RDD
    val scoresRDD = ss.parallelize(scores,3)
    
    //将RDD转化为Row的形式,为了生成DataFrame使用
    val scoresRowRDD = scoresRDD.map(v=>(
      Row(v.split(",")(0),v.split(",")(1),v.split(",")(2).toInt)
      ))

    //创建DataFrame的各字段名称及类型的schema
    val scoresSchema = StructType(Array(
      StructField("class",   StringType, true),
      StructField("subject", StringType, true),
      StructField("score",   IntegerType,true)
    ))

    //创建DataFrame, 通过上面的RowRDD和Schema
    val scoresDF = spark.createDataFrame(scoresRowRDD,scoresSchema)

    //通过分组和聚合及内部函数sum求得每班每科的总分数
    val resDF  = scoresDF.groupBy("class","subject").agg('subject,sum('score))

    //按总分数由高到低进行排序,然后创建新的Row形式的结果RDD
    val resRowRDD = resDF.map(v=>Tuple3(v(0).toString,v(1).toString,v(3).toString.toInt)).sortBy(v=>v._3,false)
      .map(r=>Row(r._1,r._2,r._3))

    //创建保存结果的DataFrame的各字段名称及类型的schema
    val resultSchema = StructType(Array(
      StructField("class",   StringType, true),
      StructField("subject", StringType, true),
      StructField("totals",   IntegerType,true)
    ))

    //通过结果RDD和结果schema创建保存结果数据的DataFrame
    val resDFForShow = spark.createDataFrame(resRowRDD,resultSchema)
    
    //直接显示结果数据
    resDFForShow.show()

4. 程序的运行结果如下

+-----+-------+------+
|class|subject|totals|
+-----+-------+------+
|   C2|     S2|   240|
|   C3|     S3|   231|
|   C3|     S1|   228|
|   C3|     S2|   226|
|   C1|     S1|   216|
|   C1|     S3|   205|
|   C2|     S1|   203|
|   C1|     S2|   200|
|   C2|     S3|   198|
+-----+-------+------+

你可能感兴趣的:(Spark)