利用OpenCV的函数获取双目相机拍摄物体的深度图(总结)

先上《Learning OpenCV 3》书配套的代码:

// Example 19-3. Stereo calibration, rectification, and correspondence
#pragma warning(disable : 4996)
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;

void help(char *argv[]) {
  cout
      << "\n\nExample 19-3. Stereo calibration, rectification, and "
         "correspondence"
      << "\n    Reads in list of locations of a sequence of checkerboard "
         "calibration"
      << "\n    objects from a left,right stereo camera pair. Calibrates, "
         "rectifies and then"
      << "\n    does stereo correspondence."
      << "\n"
      << "\n    This program will run on default parameters assuming you "
         "created a build directory"
      << "\n    directly below the Learning-OpenCV-3 directory and are "
         "running programs there.   NOTE: the list_of_stereo_pairs> must"
      << "\n    give the full path name to the left right images, in "
         "alternating"
      << "\n    lines: left image, right image, one path/filename per line, see"
      << "\n    stereoData/example_19-03_list.txt file, you can comment out "
         "lines"
      << "\n    there by starting them with #."
      << "\n"
      << "\nDefault Call (with parameters: board_w = 9, board_h = 6, list = "
         "../stereoData_19-03_list.txt):"
      << "\n" << argv[0] << "\n"
      << "\nManual call:"
      << "\n" << argv[0] << " [  ]"
      << "\n\n PRESS ANY KEY TO STEP THROUGH RESULTS AT EACH STAGE."
      << "\n" << endl;
}

static void StereoCalib(const char *imageList, int nx, int ny,
                        bool useUncalibrated) {
  bool displayCorners = true;
  bool showUndistorted = true;
  bool isVerticalStereo = false; // horiz or vert cams
  const int maxScale = 1;
  const float squareSize = 1.f;

  // actual square size
  FILE *f = fopen(imageList, "rt");
  int i, j, lr;
  int N = nx * ny;
  cv::Size board_sz = cv::Size(nx, ny);
  vector imageNames[2];
  vector boardModel;
  vector > objectPoints;
  vector > points[2];
  vector corners[2];
  bool found[2] = {false, false};
  cv::Size imageSize;

  // READ IN THE LIST OF CIRCLE GRIDS:
  //
  if (!f) {
    cout << "Cannot open file " << imageList << endl;
    return;
  }
  for (i = 0; i < ny; i++)
    for (j = 0; j < nx; j++)
      boardModel.push_back(
          cv::Point3f((float)(i * squareSize), (float)(j * squareSize), 0.f));
  i = 0;
  for (;;) {
    char buf[1024];
    lr = i % 2;
    if (lr == 0)
      found[0] = found[1] = false;
	cout << "size of buf:" << sizeof(buf) << endl;
    if (!fgets(buf, sizeof(buf) - 3, f))
      break;
    size_t len = strlen(buf);
    while (len > 0 && isspace(buf[len - 1]))
      buf[--len] = '\0';
    if (buf[0] == '#')
      continue;
    cv::Mat img = cv::imread(buf, 0);
    if (img.empty())
      break;
    imageSize = img.size();
    imageNames[lr].push_back(buf);
    i++;

    // If we did not find board on the left image,
    // it does not make sense to find it on the right.
    //
    if (lr == 1 && !found[0])
      continue;

    // Find circle grids and centers therein:
    for (int s = 1; s <= maxScale; s++) {
      cv::Mat timg = img;
      if (s > 1)
        resize(img, timg, cv::Size(), s, s, cv::INTER_CUBIC);
      // Just as example, this would be the call if you had circle calibration
      // boards ...
      //      found[lr] = cv::findCirclesGrid(timg, cv::Size(nx, ny),
      //      corners[lr],
      //                                      cv::CALIB_CB_ASYMMETRIC_GRID |
      //                                          cv::CALIB_CB_CLUSTERING);
      //...but we have chessboards in our images
      found[lr] = cv::findChessboardCorners(timg, board_sz, corners[lr]);

      if (found[lr] || s == maxScale) {
        cv::Mat mcorners(corners[lr]);
        mcorners *= (1. / s);
      }
      if (found[lr])
        break;
    }
    if (displayCorners) {
      cout << buf << endl;
      cv::Mat cimg;
      cv::cvtColor(img, cimg, cv::COLOR_GRAY2BGR);

      // draw chessboard corners works for circle grids too
      cv::drawChessboardCorners(cimg, cv::Size(nx, ny), corners[lr], found[lr]);
      cv::imshow("Corners", cimg);
      if ((cv::waitKey(0) & 255) == 27) // Allow ESC to quit
        exit(-1);
    } else
      cout << '.';
    if (lr == 1 && found[0] && found[1]) {
      objectPoints.push_back(boardModel);
      points[0].push_back(corners[0]);
      points[1].push_back(corners[1]);
    }
  }
  fclose(f);

  // CALIBRATE THE STEREO CAMERAS
  cv::Mat M1 = cv::Mat::eye(3, 3, CV_64F);
  cv::Mat M2 = cv::Mat::eye(3, 3, CV_64F);
  cv::Mat D1, D2, R, T, E, F;
  cout << "\nRunning stereo calibration ...\n";
  cv::stereoCalibrate(
      objectPoints, points[0], points[1], M1, D1, M2, D2, imageSize, R, T, E, F,
      cv::CALIB_FIX_ASPECT_RATIO | cv::CALIB_ZERO_TANGENT_DIST |
          cv::CALIB_SAME_FOCAL_LENGTH,
      cv::TermCriteria(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 100,
                       1e-5));
  cout << "Done! Press any key to step through images, ESC to exit\n\n";

  // CALIBRATION QUALITY CHECK
  // because the output fundamental matrix implicitly
  // includes all the output information,
  // we can check the quality of calibration using the
  // epipolar geometry constraint: m2^t*F*m1=0
  vector lines[2];
  double avgErr = 0;
  int nframes = (int)objectPoints.size();
  for (i = 0; i < nframes; i++) {
    vector &pt0 = points[0][i];
    vector &pt1 = points[1][i];
    cv::undistortPoints(pt0, pt0, M1, D1, cv::Mat(), M1);
    cv::undistortPoints(pt1, pt1, M2, D2, cv::Mat(), M2);
    cv::computeCorrespondEpilines(pt0, 1, F, lines[0]);
    cv::computeCorrespondEpilines(pt1, 2, F, lines[1]);

    for (j = 0; j < N; j++) {
      double err = fabs(pt0[j].x * lines[1][j].x + pt0[j].y * lines[1][j].y +
                        lines[1][j].z) +
                   fabs(pt1[j].x * lines[0][j].x + pt1[j].y * lines[0][j].y +
                        lines[0][j].z);
      avgErr += err;
    }
  }
  cout << "avg err = " << avgErr / (nframes * N) << endl;

  // COMPUTE AND DISPLAY RECTIFICATION
  //
  if (showUndistorted) {
    cv::Mat R1, R2, P1, P2, map11, map12, map21, map22;

    // IF BY CALIBRATED (BOUGUET'S METHOD)
    //
    if (!useUncalibrated) {
      stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2,
                    cv::noArray(), 0);
      isVerticalStereo = fabs(P2.at(1, 3)) > fabs(P2.at(0, 3));
      // Precompute maps for cvRemap()
      initUndistortRectifyMap(M1, D1, R1, P1, imageSize, CV_16SC2, map11,
                              map12);
      initUndistortRectifyMap(M2, D2, R2, P2, imageSize, CV_16SC2, map21,
                              map22);
    }

    // OR ELSE HARTLEY'S METHOD
    //
    else {

      // use intrinsic parameters of each camera, but
      // compute the rectification transformation directly
      // from the fundamental matrix
      vector allpoints[2];
      for (i = 0; i < nframes; i++) {
        copy(points[0][i].begin(), points[0][i].end(),
             back_inserter(allpoints[0]));
        copy(points[1][i].begin(), points[1][i].end(),
             back_inserter(allpoints[1]));
      }
      cv::Mat F = findFundamentalMat(allpoints[0], allpoints[1], cv::FM_8POINT);
      cv::Mat H1, H2;
      cv::stereoRectifyUncalibrated(allpoints[0], allpoints[1], F, imageSize,
                                    H1, H2, 3);
      R1 = M1.inv() * H1 * M1;
      R2 = M2.inv() * H2 * M2;

      // Precompute map for cvRemap()
      //
      cv::initUndistortRectifyMap(M1, D1, R1, P1, imageSize, CV_16SC2, map11,
                                  map12);
      cv::initUndistortRectifyMap(M2, D2, R2, P2, imageSize, CV_16SC2, map21,
                                  map22);
    }

    // RECTIFY THE IMAGES AND FIND DISPARITY MAPS
    //
    cv::Mat pair;
    if (!isVerticalStereo)
      pair.create(imageSize.height, imageSize.width * 2, CV_8UC3);
    else
      pair.create(imageSize.height * 2, imageSize.width, CV_8UC3);

    // Setup for finding stereo corrrespondences
    //
    cv::Ptr stereo = cv::StereoSGBM::create(
        -64, 128, 11, 100, 1000, 32, 0, 15, 1000, 16, cv::StereoSGBM::MODE_HH);

    for (i = 0; i < nframes; i++) {
      cv::Mat img1 = cv::imread(imageNames[0][i].c_str(), 0);
      cv::Mat img2 = cv::imread(imageNames[1][i].c_str(), 0);
      cv::Mat img1r, img2r, disp, vdisp;
      if (img1.empty() || img2.empty())
        continue;
      cv::remap(img1, img1r, map11, map12, cv::INTER_LINEAR);
      cv::remap(img2, img2r, map21, map22, cv::INTER_LINEAR);
      if (!isVerticalStereo || !useUncalibrated) {

        // When the stereo camera is oriented vertically,
        // Hartley method does not transpose the
        // image, so the epipolar lines in the rectified
        // images are vertical. Stereo correspondence
        // function does not support such a case.
        stereo->compute(img1r, img2r, disp);
        cv::normalize(disp, vdisp, 0, 256, cv::NORM_MINMAX, CV_8U);
        cv::imshow("disparity", vdisp);
      }
      if (!isVerticalStereo) {
        cv::Mat part = pair.colRange(0, imageSize.width);
        cvtColor(img1r, part, cv::COLOR_GRAY2BGR);
        part = pair.colRange(imageSize.width, imageSize.width * 2);
        cvtColor(img2r, part, cv::COLOR_GRAY2BGR);
        for (j = 0; j < imageSize.height; j += 16)
          cv::line(pair, cv::Point(0, j), cv::Point(imageSize.width * 2, j),
                   cv::Scalar(0, 255, 0));
      } else {
        cv::Mat part = pair.rowRange(0, imageSize.height);
        cv::cvtColor(img1r, part, cv::COLOR_GRAY2BGR);
        part = pair.rowRange(imageSize.height, imageSize.height * 2);
        cv::cvtColor(img2r, part, cv::COLOR_GRAY2BGR);
        for (j = 0; j < imageSize.width; j += 16)
          line(pair, cv::Point(j, 0), cv::Point(j, imageSize.height * 2),
               cv::Scalar(0, 255, 0));
      }
      cv::imshow("rectified", pair);
      if ((cv::waitKey() & 255) == 27)
        break;
    }
  }
}

//
//Default Call (with parameters: board_w = 9, board_h = 6, list =
//  ../stereoData_19-03_list.txt):
//./example_19-03
//
//Manual call:
//./example_19-03 [  ]
//
// Press any key to step through results, ESC to exit
//


int main(int argc, char **argv) {
  help(argv);
  int board_w = 9, board_h = 6;
  const char *board_list = "../stereoData/example_19-03_list.txt";
  if (argc == 4) {
    board_list = argv[1];
    board_w = atoi(argv[2]);
    board_h = atoi(argv[3]);
  }
  StereoCalib(board_list, board_w, board_h, true);
  return 0;
}

1 OpenCV里提供的获取深度图的两个函数

第一个函数:

void cv::perspectiveTransform(
cv::InputArray src, // Input 2 or 3 channel array (a list of 2d or 3d vectors)
cv::OutputArray dst, // Output array, same size as 'src'
cv::InputArray Q // 3x3 or 4x4 floaring point  transformation matrix
);
 

第二个函数:

void cv::reprojectImageTo3D(
cv::InputArray disparity, // Input disparity image, any of: U8, S16, S32, or F32
cv::OutputArray _3dImage, // image: 3d location of each pixel
cv::InputArray Q, // 4x4 Perspective Transformation (from stereoRectify())
cv::bool handleMissingValues = false, // map "unknowns" to large distance
cv::int ddepth = -1 // depth for '_3dimage', can be any of: CV_16S, CV_32S,or CV_32F (default)
);

下来重点看第二个函数。执行这个函数,需要知道  视差图disparity iamge 和4x4 Perspective Transformation(Disparity to depth  mapping matrix) Q 。

2 How to abtain disparity image(如何获取视差图)

获取时差图,主要有两个重方法,对应着两个类 :cv::StereoBM和cv::StereoSGBM。这里选择cv::StereoSGBM(通往罗马的道路千万条,暂且就选这一条)。

class CV_EXPORTS_W StereoMatcher : public Algorithm
{
public:
    enum { DISP_SHIFT = 4,
           DISP_SCALE = (1 << DISP_SHIFT)
         };

    /** @brief Computes disparity map for the specified stereo pair

    @param left Left 8-bit single-channel image.
    @param right Right image of the same size and the same type as the left one.
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
     */
    CV_WRAP virtual void compute( InputArray left, InputArray right,
                                  OutputArray disparity ) = 0;
    .......
}

class CV_EXPORTS_W StereoSGBM : public StereoMatcher
{
public:
 
    .........


    CV_WRAP static Ptr create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
                                          int preFilterCap = 0, int uniquenessRatio = 0,
                                          int speckleWindowSize = 0, int speckleRange = 0,
                                          int mode = StereoSGBM::MODE_SGBM);
};

cv::StereoSGBM,the semi-global block matching algorithm is presented by OpenCV as an object that holds all of the necessary parameters and provides an overloaded compute() for actually computing disparities。 The overloaded method compute() expects three arguments: the left andright images (left and right) and the output image (disparity). The produced disparity will have fixed-point representation, with 4 bits of fractional precision, so you will want to divide by 16 when using these disparities.

在示例代码example 19-3中,是调用下面的函数语句

stereo->compute(img1r, img2r, disp);

3、img1r, img2r是什么

从代码来看是,通调用函数cv::remap生成的。

      cv::remap(img1, img1r, map11, map12, cv::INTER_LINEAR);
      cv::remap(img2, img2r, map21, map22, cv::INTER_LINEAR);

cv::remap的函数原型

CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
                         InputArray map1, InputArray map2,
                         int interpolation, int borderMode = BORDER_CONSTANT,
                         const Scalar& borderValue = Scalar());

call this funciton, the argumnets :map11, map12;map21, map22 are key, then we should konw how to abtain them.

4  map11, map12,map21, map22

      stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2,
                    cv::noArray(), 0);
      isVerticalStereo = fabs(P2.at(1, 3)) > fabs(P2.at(0, 3));
      // Precompute maps for cvRemap()
      initUndistortRectifyMap(M1, D1, R1, P1, imageSize, CV_16SC2, map11,map12);
      initUndistortRectifyMap(M2, D2, R2, P2, imageSize, CV_16SC2, map21,map22);

From the code,we can know, those four arguments are form the outputs by calling initUndistortRectifyMap.

We can read our input,R1,P1,R2,P2 to cv::initUndistortRectifyMap() straight out of cv::stereoRectify().

而cv::stereoRectify()需要的参数可以从stereoCalibrate()中获取。 另外从视差图(disparity map)到深度图(depth map)需要的一个重要参数 Q(前文提到的),4x4 Disparity to depth mapping matrix 也是要从stereoCalibrate()中获取。书中的代码只计算了 disparity map, 因此没有调用stereoCalibrate()时相应的参数输入的是cv::noArray(), 因此要求的深度图的话,这里可以 定义一个全局变量 cv::Mat  Q,用Q代替cv::noArray()。即

stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2, Q, 0);

 

在实际应用中,stereoCalibrate只调用一次,获得各个相机的内参,畸变参数,两个相机间的R和T。

至此整个脉络就比较清晰了。

 


 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

References:

1、《Learning OpenCV 3》and the codes with the book.

 

你可能感兴趣的:(图像处理&机器视觉)