开关电源学习笔记5 --- DC-DC变换器的储能电感设计之三种变换器的电感体积估算

首先,计算电感储能量(用到笔记4的电磁学知识)

根据 E = 1 2 L I 2 = 1 2 L I × I E = \frac{1}{2}LI^{2} = \frac{1}{2}LI × I E=21LI2=21LI×I

H × L e = N × I ⇒ I = H × L e N ⇒ H× L_{e} = N ×I \Rightarrow I = \frac{H × L_{e}}{N} \Rightarrow H×Le=N×II=NH×Le I = B × L e μ e μ 0 N I = \frac{B × L_{e}}{\mu_{e} \mu_{0} N} I=μeμ0NB×Le

L × Δ I = N × A e × μ Δ H L × \Delta I = N × A_{e} × \mu\Delta H L×ΔI=N×Ae×μΔH

把①②式带入E得: E = 1 2 × N × A e × μ Δ H × B × L e μ e μ 0 N = B 2 × L e × A e 2 μ e μ 0 E = \frac{1}{2} × N × A_{e} × \mu\Delta H × \frac{B × L_{e}}{\mu_{e} \mu_{0} N} = \frac{B^{2} × L_{e} × A_{e}}{2\mu_{e} \mu_{0}} E=21×N×Ae×μΔH×μeμ0NB×Le=2μeμ0B2×Le×Ae

L e L_{e} Le为磁芯磁路的有效长度, A e A_{e} Ae为截面积,故 V e = L e × A e V_{e} = L_{e} × A_{e} Ve=Le×Ae为磁芯的有效体积

所以电感储能 E = B 2 × V e 2 μ e μ 0 E = \frac{B^{2} × V_{e}}{2\mu_{e} \mu_{0}} E=2μeμ0B2×Ve


1. Buck - Boost变换器中

由于电流越大,磁感应强度B就越大(毕奥-萨伐尔定律),电流与磁感应强度的变化趋势相同,即在 T o n T_{on} Ton期间, I L m i n I_{Lmin} ILmin对应 B m i n B_{min} Bmin I L m a x I_{Lmax} ILmax对应 B m a x B_{max} Bmax,所以在 T o n T_{on} Ton或者 T o f f T_{off} Toff期间, Δ B = B m a x − B m i n \Delta B = B_{max} - B_{min} ΔB=BmaxBmin,对应的 Δ E = B m a x 2 × V e 2 μ e μ 0 − B m i n 2 × V e 2 μ e μ 0 = V e μ e μ 0 × B m a x + B m i n 2 × ( B m a x − B m i n ) = V e μ e μ 0 Δ B × B D C \Delta E = \frac{B_{max}^{2} × V_{e}}{2\mu_{e} \mu_{0}} - \frac{B_{min}^{2} × V_{e}}{2\mu_{e} \mu_{0}} = \frac{V_e}{\mu_{e}\mu_{0}} × \frac{B_{max} + B_{min}}{2} × (B_{max} - B_{min}) = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC} ΔE=2μeμ0Bmax2×Ve2μeμ0Bmin2×Ve=μeμ0Ve×2Bmax+Bmin×(BmaxBmin)=μeμ0VeΔB×BDC
B D C B_{DC} BDC为平均磁感应强度)
开关电源学习笔记5 --- DC-DC变换器的储能电感设计之三种变换器的电感体积估算_第1张图片

Buck - Boost变换器在 T o n T_{on} Ton期间,电感充能, T o f f T_{off} Toff期间,电感放能
所以 Δ E \Delta E ΔE等于 T o n T_{on} Ton期间电源的输入能量
Δ E = U i n × I L × T o n = U i n × I L × D × T = U i n × I i n × T = P i n f s w \Delta E = U_{in} × I_{L} × T_{on} = U_{in} × I_{L} × D × T = U_{in} × I_{in} × T = \frac{P_{in}}{f_{sw}} ΔE=Uin×IL×Ton=Uin×IL×D×T=Uin×Iin×T=fswPin
( I i n = I L × D ) (I_{in} = I_{L} × D) (Iin=IL×D)
代入: Δ E = V e μ e μ 0 Δ B × B D C \Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC} ΔE=μeμ0VeΔB×BDC

得到电感磁芯有效体积 V e = μ e × μ 0 Δ B × B D C × P i n f s w V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} Ve=ΔB×BDCμe×μ0×fswPin

2. Buck 变换器中

开关闭合 T o n T_{on} Ton期间电源除了给电感“充电”,还用来驱动负载
U i n × I L × T o n = Δ E + U o × I L × T o n U_{in} × I_{L} × T_{on} = \Delta E + U_{o} × I_{L} × T_{on} Uin×IL×Ton=ΔE+Uo×IL×Ton
由笔记1的 “伏秒积”平衡可知 U o = D × U i n U_{o} = D × U_{in} Uo=D×Uin
Δ E = ( U o − U i n ) × I L × T o n = ( 1 − D ) × U i n × I L × D × T = ( 1 − D ) × U i n × I i n × T = ( 1 − D ) × P i n f s w \Delta E = (U_{o} - U_{in}) × I_{L} × T_{on} = (1 - D) × U_{in} × I_{L} × D × T = (1 - D) × U_{in} × I_{in} × T = (1 - D) × \frac{P_{in}}{f_{sw}} ΔE=(UoUin)×IL×Ton=(1D)×Uin×IL×D×T=(1D)×Uin×Iin×T=(1D)×fswPin
代入: Δ E = V e μ e μ 0 Δ B × B D C \Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC} ΔE=μeμ0VeΔB×BDC

得: V e = μ e × μ 0 Δ B × B D C × P i n f s w × ( 1 − D ) V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} × (1 - D) Ve=ΔB×BDCμe×μ0×fswPin×(1D)

3. Boost变换器中

T o n T_{on} Ton期间,电感充能
Δ E = U i n × I L × T o n = U i n × I i n × D × T = P i n f s w × D \Delta E = U_{in} × I_{L} × T_{on} = U_{in} × I_{in} × D × T = \frac{P_{in}}{f_{sw}} × D ΔE=Uin×IL×Ton=Uin×Iin×D×T=fswPin×D
( I i n = I L ) (I_{in} = I_{L}) (Iin=IL)
代入: Δ E = V e μ e μ 0 Δ B × B D C \Delta E = \frac{V_e}{\mu_{e}\mu_{0}}\Delta B × B_{DC} ΔE=μeμ0VeΔB×BDC

得: V e = μ e × μ 0 Δ B × B D C × P i n f s w × D V_{e} = \frac{\mu_{e} × \mu_{0}}{\Delta B × B_{DC}} × \frac{P_{in}}{f_{sw}} × D Ve=ΔB×BDCμe×μ0×fswPin×D


综上

三个变换器中的 V e V_{e} Ve相比较可知,各参数相同时,Buck - Boost变换器的电感体积最大,所以实际设计中应尽可能使用Buck和Boost

你可能感兴趣的:(开关电源学习笔记)