- 九章数学体系开源工程白皮书
《九章数学体系开源工程白皮书》前言:从公理冲突到场景适配的计算革命传统计算系统深陷“体系冲突陷阱”:阿基米德体系以“无穷可分”“绝对无穷不可达”为公理,适合描述开域,然而,99%以上的物理闭域场景(如星系边界、原子结构)是闭域。因“开域无穷假设”与“闭域有限性”的本质矛盾,必然产生类似芝诺悖论的逻辑错误——暗物质谜题、量子叠加态的概率描述、高维空间假设,本质上都是这种“公理-场景错配”的产物。如同
- Python pip配置全局镜像源
Python编程之道
Python人工智能与大数据Python编程之道pythonpip网络ai
Pythonpip配置全局镜像源关键词:Python、pip、全局镜像源、配置、国内镜像摘要:本文详细介绍了Python中pip配置全局镜像源的相关内容。首先阐述了配置全局镜像源的背景和目的,接着解释了核心概念,包括pip和镜像源的原理。然后详细说明了配置全局镜像源的具体操作步骤,包括不同操作系统下的配置方法,并给出了相应的Python代码示例。同时,还讲解了相关的数学模型(虽然在本主题中数学模型
- 面向高校的人工智能通识教育课程实验设计方案
武汉唯众智创
人工智能人工智能通识教育课程实验人工智能通识教育人工智能通识课程人工智能通识
一、前言2018年,教育部发布《高等学校人工智能创新行动计划》,明确提出“重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索‘人工智能+X’的人才培养模式”。过去,人工智能教育多集中于研究生阶段,本科生接触机会相对有限。2019年,教育部批准35所高校增设“人工智能”本科专业,这标志着人工智能正式纳入本科教育体系。如今,人工智能课程大多是计
- 分布式领域后端服务的限流算法实现
大厂资深架构师
SpringBoot开发实战分布式算法wpfai
分布式领域后端服务的限流算法实现关键词:分布式系统、限流算法、令牌桶、漏桶、滑动窗口、Redis、高并发摘要:本文深入探讨分布式系统中后端服务的限流算法实现。我们将从基础概念出发,详细分析各种限流算法的原理和适用场景,包括计数器算法、滑动窗口算法、令牌桶算法和漏桶算法。文章将提供Python实现代码和数学建模,并通过实际案例展示如何在分布式环境中使用Redis实现高效的限流机制。最后,我们将讨论限
- 隐形水印嵌入技术详解
参考资料HTML文本对齐方式HTML符号实体HTML用于联系信息的HTML用于著作标题的HTML有序列表HTML注释HTML表格表头单元格HTML数学符号隐形水印嵌入技术详解(含HTML代码示例)1.图片水印技术1.1频域水印(DCT变换)//使用canvas处理图像functionembedDCTWatermark(imageData,watermarkText){constblockSize=
- java鸡兔同笼代码
【聚创网】源码分享
java开发语言
鸡兔同笼问题是一个经典的数学问题,可以用Java编写一个程序来解决。以下是一个简单的Java代码示例:importjava.util.Scanner;publicclassChickenRabbit{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);System.out.println("请输入头的数量:
- LeetCode643. 子数组最大平均数 I
题目分析本题要求找出一个长度为k的连续子数组,使其平均值最大。由于平均值由子数组和决定,问题转化为寻找最大子数组和(再除以k)。解题思路滑动窗口技巧:先计算第一个窗口(0到k-1)的元素和。将窗口向右滑动(每次移动一位):减去窗口左侧离开的元素加上窗口右侧新增的元素在滑动过程中记录窗口和的最大值。数学优化:平均值=窗口和/k最大化平均值⇨最大化窗口和最终结果=最大窗口和÷k(注意转换为double
- GPT在AI原生应用领域的无限潜力
GPT在AI原生应用领域的无限潜力关键词:GPT、AI原生应用、自然语言处理、无限潜力、应用场景摘要:本文深入探讨了GPT在AI原生应用领域所展现出的无限潜力。首先介绍了相关背景知识,包括GPT的基本概念和AI原生应用的定义。接着详细解释了GPT的核心概念,以及它与AI原生应用的紧密联系。通过数学模型和公式对GPT的工作原理进行了阐述,并给出了实际的代码案例。还探讨了GPT在多个实际应用场景中的表
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- c语言——数组
晚云与城
c语言算法数据结构
目录1.数组的概念2.⼀维数组的创建和初始化3.⼀维数组的使用4.⼀维数组在内存中的存储5.sizeof计算数组元素个数6.⼆维数组的创建7.⼆维数组的初始化8.⼆维数组的使用9.⼆维数组在内存中的存储10.C99中的变长数组1.数组的概念数组是一组相同类型元素的集合(能与数学中的集合联想起来理解)。主要目的之一是能够批量存储多个相同类型的数据,让其更容易解决批量操作的问题。1.放1个或多个数据,
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- 【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
言析数智
数据挖掘常见面试题支持向量机数据挖掘算法SVM
文章大纲SVM(支持向量机)原理:用最通俗的话讲清楚1.核心思想:找一条“最安全”的分界线2.数学背后的“人话”逻辑3.处理“分不开”的情况:核函数的魔法4.为什么SVM有时比神经网络“聪明”?`5.SVM的优缺点:适合什么场景?`6.一句话总结SVM7.SVM常见的面试知识点除了原理相关内容外**1.硬间隔SVM的数学表达****2.软间隔SVM的数学表达****3.拉格朗日对偶问题推导****
- RabbitMQ消息队列在大数据系统中的实战应用案例
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据rabbitmq分布式ai
RabbitMQ消息队列在大数据系统中的实战应用案例关键词:RabbitMQ、消息队列、大数据系统、实战案例、高并发处理、分布式架构、数据管道摘要:本文深入探讨RabbitMQ消息队列在大数据系统中的核心应用场景,结合具体技术实现和实战案例,详细解析其在数据采集、实时处理、异步解耦等关键环节的技术优势。通过架构设计原理、核心算法实现、数学模型分析和项目实战,展示如何利用RabbitMQ构建高可靠、
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 【深度学习】一文彻底搞懂前向传播(Forward Pass)与反向传播(Backward Pass)
烟锁池塘柳0
机器学习与深度学习深度学习人工智能机器学习
【深度学习】一文彻底搞懂前向传播(ForwardPass)与反向传播(BackwardPass)摘要:在深度学习的星辰大海中,无论模型多么复杂,其训练过程都离不开两大核心支柱:前向传播(ForwardPass)和反向传播(BackwardPass)。理解这两个概念,就等于拿到了解开神经网络训练奥秘的钥匙。本文将用最直白易懂的方式,并结合规范的数学表达,为你彻底讲透这两个基本而又重要的过程。文章目录
- 【Pytorch学习笔记(三)】张量的运算(2)
一、引言在《张量的运算(1)》中我们已经学习了几种张量中常用的非算数运算如张量的索引与切片,张量的拼接等。本节我们继续学习张量的算术运算。二、张量的算术运算(一)对应元素的加减乘除在PyTorch中,张量的对应元素的算术运算包括加法、减法、乘法、除法等常见的数学运算。这些运算可以对张量进行逐元素操作(element-wise),也可以进行张量之间的广播运算(broadcasting)。1.逐元素操
- TensorFlow 零基础入门:手把手教你跑通第一个AI模型
蓑笠翁001
人工智能人工智能tensorflowpython机器学习深度学习分类
今天用最直白的语言,带完全零基础的同学走进TensorFlow的世界。不用担心数学公式,先学会"开车",再学"造车"!1.准备工作:安装TensorFlow就像玩游戏需要先安装游戏客户端一样,我们需要先安装TensorFlow。打开你的电脑(Windows/Mac都行),按下Win+R,输入cmd打开命令提示符,然后输入:pipinstalltensorflow看到"Successfullyins
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- 数学视频动画引擎Python库 -- Manim Voiceover 安装 Installation
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。ManimVoiceover是一个为Manim打造的专注于语音旁白的插件:直接在Python中添加语音旁白:无需使用视频编辑器,即可为Manim视频添加语音旁白。在渲染期间录制旁白:通过简单的命令行界面(参见RecorderService),可使用麦克风在渲染过程中录制语音旁白。使用AI生成旁白:利用多种
- 【Python打卡Day48】随机张量与广播机制@浙大疏锦行
可能是猫猫人
Python打卡训练营内容python开发语言
在继续讲解模块消融前,先补充几个之前没提的基础概念尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要一、随机张量的生成在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入纬度经过模块后输出的维度,都可以用一个随机函数来实现需要的张量格式,而无需像之前一样必须加载一张真实的图片。“张量”概念它听起来可能有点抽象,但在数学和物理学(尤其是广义相对论、连续介质力
- 数学视频动画引擎Python库 -- Manim Voiceover 快速入门 Quickstart
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。ManimVoiceover是一个为Manim打造的专注于语音旁白的插件:直接在Python中添加语音旁白:无需使用视频编辑器,即可为Manim视频添加语音旁白。在渲染期间录制旁白:通过简单的命令行界面(参见RecorderService),可使用麦克风在渲染过程中录制语音旁白。使用AI生成旁白:利用多种
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- MOBILEVIT: 轻量级、通用且适用于移动设备的视觉Transformer
AI专题精讲
Paper阅读transformer深度学习人工智能计算机视觉
摘要轻量级卷积神经网络(CNN)是移动视觉任务的事实标准。它们的空间归纳偏置使得它们能够在不同的视觉任务中以较少的参数学习表示。然而,这些网络在空间上是局部的。为了学习全局表示,基于自注意力的视觉Transformer(ViT)被采用。与CNN不同,ViT是重量级的。本文提出了以下问题:是否有可能将CNN和ViT的优势结合起来,构建一个适用于移动视觉任务的轻量级低延迟网络?为此,我们介绍了Mobi
- PID算法的一点改进思路
在PID算法里面有三个系数Kp,Ki,Kd;其中Kp是比例常数,Ki是积分常数,Kd是微分常数。Kp比例常数可以控制被控制量变化速度,越大控制越快但是越容易引发系统震荡,越小控制又比较慢;Ki比例常数是控制稳态误差(系统稳态的时候控制量不一定等于设置量);Kd比例常数可预测控制量变化趋势。图是蛋糕达人的。从积分的数学理解上可以知道系统稳态的时候红色部分面积与蓝色部分面积应该相等,但是系统从一开始并
- 编程范式思想
编程范式发展历程现代软件架构设计经历了从面向过程到面向对象,再到领域驱动设计的演进过程:POP(面向过程)→OOP(面向对象)→DDD(领域驱动设计)↓↓↓函数为中心对象为中心业务领域为中心1.POP-Procedure-OrientedProgramming(面向过程编程)核心思想:以过程和函数为中心组织代码特点:全局数据共享、自顶向下设计、线性执行流程适用场景:简单算法、数学计算、系统工具程序
- 什么是阶乘?
周勇政
阶乘(factorial)是基斯顿·卡曼(ChristianKramp,1760–1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×
- MySQL函数分类(收藏)
两圆相切
mysql数据库
1.数值处理函数用于数学运算和数值处理包括基本的算术运算、舍入、随机数生成等函数名功能语法示例结果示例版本适用备注ABS()返回数值的绝对值SELECTABS(-5);5所有版本CEIL()/CEILING()返回大于或等于数值的最小整数SELECTCEIL(3.2);4所有版本两个函数功能相同FLOOR()返回小于或等于数值的最大整数SELECTFLOOR(3.8);3所有版本ROUND()对数
- NoSQL数据库的分布式存储优化
数据库管理艺术
nosql分布式数据库ai
NoSQL数据库的分布式存储优化关键词:NoSQL、分布式存储、数据分片、一致性哈希、CAP定理、读写优化、水平扩展摘要:本文深入探讨NoSQL数据库在分布式环境下的存储优化策略。我们将从基础概念出发,分析NoSQL数据库的架构特点,详细讲解分布式存储的核心算法和数学模型,并通过实际代码示例展示优化技术的实现。文章还将覆盖实际应用场景、工具推荐以及未来发展趋势,为读者提供全面的NoSQL分布式存储
- 模糊逻辑:自然模糊性的数学处理
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
模糊逻辑:自然模糊性的数学处理关键词:模糊逻辑、模糊集合、模糊控制器、模糊神经网络、模式识别、决策支持系统摘要:本文深入探讨了模糊逻辑这一数学工具,旨在揭示其在处理自然模糊性方面的独特优势。通过对模糊逻辑基础、应用和高级主题的详细分析,本文展示了模糊逻辑在多个领域的实际应用,包括模糊控制器、模糊神经网络、模式识别和决策支持系统等。文章结构清晰,便于读者逐步深入理解和掌握这一重要技术。目录大纲:第一
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓