- 说话人识别系统原理
醉心编码
人工智能基础编程基础技术类人工智能说话人识别语音识别
在当今数字化和智能化飞速发展的时代,说话人识别系统作为一项关键的生物识别技术,正逐渐融入我们生活的方方面面。简单来说,说话人识别系统就像是一位“语音侦探”,能够通过分析语音中的独特特征,精准地判断出说话者的身份。它与指纹识别、人脸识别等技术一样,都属于生物识别技术的范畴,但有着独特的优势——仅通过声音即可实现身份识别,无需额外的物理接触或视觉捕捉。与语音识别不同,语音识别关注的是语音内容的转写,比
- WhisperX:革命性的自动语音识别工具
孔秋宗Mora
WhisperX:革命性的自动语音识别工具项目地址:https://gitcode.com/gh_mirrors/wh/whisperX项目介绍WhisperX是一个开源的自动语音识别(ASR)项目,由m-bain开发。该项目基于OpenAI的Whisper模型,通过引入批量推理、强制音素对齐和语音活动检测等技术,实现了高达70倍的实时转录速度,并提供了准确的单词级时间戳和说话人识别功能。Whis
- 说话人识别----技术挑战点
sunfoot001
技术挑战点为:与文本无关;说话人识别中的跨信道、噪音;短语音;多说话人、防假冒处理;训练库大小限制;
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- PyTorch(超详细)部署与激活 举起Python火炬,点亮智慧人生【Windows版】
心安成长
PyTorchpythonpytorchwindows
AI时代,我们不仅要学习Python,同时机器学习,深度学习利器也要逐步掌握,再次开始Pytorch学习教程记录。PyTorch是一个流行的开源深度学习框架,它可以用于构建、训练和部署各种机器学习和深度学习模型。PyTorch可以用于以下领域:计算机视觉:图像分类、目标检测、图像分割、人脸识别等。自然语言处理:机器翻译、文本分类、情感分析、问答系统等。语音处理:语音识别、语音合成、说话人识别等。生
- PFEA113-65 3BSE050092R65
DCS17750010683
fpga开发机器人自动化模块测试驱动开发
PFEA113-653BSE050092R65PFEA113-653BSE050092R65PFEA113-653BSE050092R65说话人识别系统中VQ判决模块的FPGA实现...后,clr_tag有效。该模块接收来自初始化模块的load_tv使能信号,....2.2码本接口收到初始化模块的load_code信号后,开始产生地址...的话路号,输出至运算控制模块,同时使load_tv、loa
- 【CCF BDCI 2023】多模态多方对话场景下的发言人识别 Baseline 0.71 概述
我是小白呀
ccfbdciccfbdci多模态多方对话竞赛
【CCFBDCI2023】多模态多方对话场景下的发言人识别Baseline0.71概述模型简介基于CNN的判断每张人脸是否是说话人的模型基于Transformer-Encoder的判断同一段对话中不同轮次的说话人关系的模型说话人识别求解器文件结构如何运行代码(以5turns为例)模型简介本基线模型共分为三个部分:基于CNN的判断每张人脸是否是说话人的模型;基于Transformer-Encoder
- 经验模式分解(EMD)及希尔伯特-黄变换(HHT)简介及matlab实现
一弦-sring
语音处理及matlab信号处理机器学习语音识别
本文介绍过程涉及到两个链接工具包,可以自己网上搜索下载,以下提供了网盘下载的地址,因为作者主要做语音方面工作,所以后面的说明主要以说话人识别为例。(链接:https://pan.baidu.com/s/1LWzlEO6Vp7CqInjqPnV8_A提取码:zga8)一、经验模式分解(EMD)关于经验模态分解的概念,网上有很多具体的讲解,这里就不进行细说,具体过程可以参考https://blog.c
- 基于支持向量机 (SVM) 和稀疏表示理论 (SRC) 的人脸识别比较
西部小狼_
一背景1.1支持向量机简介支持向量机(SupportVectorMachine,SVM)是AT&TBell实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函
- 说话人识别声纹识别CAM++,ECAPA-TDNN等算法
loong_XL
深度学习语音识别
参考:https://www.modelscope.cn/models?page=1&tasks=speaker-verification&type=audiohttps://github.com/alibaba-damo-academy/3D-Speaker/blob/main/requirements.txt单个声纹比较可以直接modelscope包运行frommodelscope.pipel
- MFA-Conformer
shadowismine
语音识别深度学习计算机视觉人工智能
基于多尺度特征聚合Conformer说话人识别模型的创新与应用论文:https://arxiv.org/abs/2203.15249代码:GitHub-zyzisyz/mfa_conformer收录于INTERSPEECH20221.简介本文由清华大学与腾讯科技(北京)有限公司、台湾大学及香港中文大学合作。提出了一种基于Conformer的多尺度特征融合的说话人识别模型(MFA-Conformer
- An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
shadowismine
1024程序员节
1.Overview论文题目:AnEnhancedRes2NetwithLocalandGlobalFeatureFusionforSpeakerVerification论文单位:阿里巴巴集团,中国科学技术大学核心内容:有效融合多尺度特征对于提高说话人识别性能至关重要。现有的大多数方法通过简单的操作,如特征求和或拼接,并采用逐层聚合的方式获取多尺度特征。本文提出了一种新的架构,称为增强式Res2N
- 进阶课1——声纹识别
AI 智能服务
AI训练师人工智能语音识别深度学习人机交互搜索引擎
声纹识别是一种生物识别技术,也称为说话人识别,包括说话人辨认和说话人确认两种技术。该技术通过将声信号转换成电信号,再使用计算机进行识别,不同的任务和应用会使用不同的声纹识别技术,例如在缩小刑侦范围时可能需要辨认技术,而在银行交易时则需要确认技术。1.概述2.声纹识别原理声纹识别的技术原理可以分为两个主要步骤:特征提取和模式匹配(模式识别)。在特征提取阶段,声纹识别系统会提取并选择对说话人的声纹具有
- TDNN方法学习
shadowismine
学习深度学习人工智能
TDNN方法简介TDNN(TimeDelayNeuralNetwork,时延神经网络)是用于处理序列数据的,比如:一段语音、一段文本将TDNN和统计池化(StatisticsPooling)结合起来,正如x-vector的网络结构,可以处理任意长度的序列x-vector的网络结构x-vector是用于文本无关的说话人识别的,因此需要处理任意长度的序列,其网络结构如下图所示:输入:每个特征图表示一帧
- matlab音频信号处理实验报告,基于MATLAB的LPC分析_语音信号处理实验报告.doc
weixin_42545066
基于MATLAB的LPC分析_语音信号处理实验报告.doc南京信息工程大学实验(实习)报告实验(实习)名称基于MATLAB的LPC分析实验(实习)日期2013.5.2得分_指导教师院电子与信息工程专业电子信息工程年级班次姓名学号一、实验目的线性预测分析是最有效的语音分析技术之一,在语音编码、语音合成、语音识别和说话人识别等语音处理领域中得到了广泛的应用。语音线性预测的基本思想是一个语音信号的抽样值
- Whisper + NemoASR + ChatGPT 实现语言转文字、说话人识别、内容总结等功能
cybozu开发者
技术前沿whisperchatgpt
引言2023年,IT领域的焦点无疑是ChatGPT,然而,同属OpenAI的开源产品Whisper似乎鲜少引起足够的注意。Whisper是一款自动语音识别系统,可以识别来自99种不同语言的语音并将其转录为文字。如果说ChatGPT为计算机赋予了大脑,那么Whisper则为其赋予了耳朵。想象一下,在企业应用领域,我们能够利用Whisper将语音转化为文字,然后再借助ChatGPT来进行翻译或总结。接
- Whisper + NemoASR + ChatGPT 实现语言转文字、说话人识别、内容总结等功能
chatgpt
引言2023年,IT领域的焦点无疑是ChatGPT,然而,同属OpenAI的开源产品Whisper似乎鲜少引起足够的注意。Whisper是一款自动语音识别系统,可以识别来自99种不同语言的语音并将其转录为文字。如果说ChatGPT为计算机赋予了大脑,那么Whisper则为其赋予了耳朵。想象一下,在企业应用领域,我们能够利用Whisper将语音转化为文字,然后再借助ChatGPT来进行翻译或总结。接
- 论文分享丨西工大音频语音与语言处理研究组四篇论文被IEEE Trans. ASLP和SPL录用
语音之家
智能语音音视频语音识别人工智能
近日,实验室三篇论文被语音研究顶级期刊IEEE/ACMTransactionsonAudio,SpeechandLanguageProcessing(TASLP)录用,一篇论文被重要期刊IEEESignalProcessingLetters(IEEESPL)录用,论文方向涉及说话人识别中的对抗攻击、基于扩散模型的跨语种情感迁移语音合成、语音转换中基于多层级韵律建模的风格迁移、基于语言模型的语音转换
- 语音识别对于智能机器人为什么重要
21世纪的机器猫
语音识别技术,也被称为自动语音识别(英语:AutomaticSpeechRecognition,ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。简单来说就是是区分说话人的声音是否是说话人本人,同时确认说话人的词汇内容。那么语音识别如何运用到智能机器人当中呢。语音是
- ICASSP 2023说话人识别方向论文合集
语音之家
智能语音人工智能
今年入选ICASSP2023的论文中,说话人识别(声纹识别)方向约有64篇,初步划分为SpeakerVerification(31篇)、SpeakerRecognition(9篇)、SpeakerDiarization(17篇)、Anti-Spoofing(4篇)、others(3篇)五种类型。本文是ICASSP2023说话人识别方向论文合集系列的最后一期,整理了SpeakerRecognitio
- NeMo 声纹识别VPR-实战
wxl781227
ASR实战人工智能声纹识别声纹验证
声纹识别(VPR),生物识别技术的一种,也称为说话人识别,是从说话人发出的语音信号中提取声纹信息,从应用上看,可分为:说话人辨认(SpeakerIdentification):用以判断某段语音是若干人中的哪一个所说的,是“多选一”问题;说话人确认(SpeakerVerification):用以确认某段语音是否是指定的某个人所说的,是“一对一判别”问题。本文主要是识别两个声音是否为同一个人。应用场景
- HIT SPLAB端到端说话人识别演示系统说明
ChongmingLiu
部署环境要求python3.0+sklearnnumpytensorflowpyprindpyaudioscipypython_speech_features目录结构说明speaker_recognition_demonstrationmodelmodel_of_extractor_with_attentionparams_1.jsonspk_modelspeaker_model.modelreg
- 使用tensorflow和densenet神经网路实现语谱图声纹识别,即说话人识别。
zhigongjz
神经网络CNN卷积TensorflowDensenet语谱图声纹识别
介绍本文介绍一种使用tensorflow框架和densenet神经网路实现声纹语谱图识别算法,即说话人识别。本文侧重一种解决方案的思路,仅做了小批量数据的简单验证,收敛效果良好,还没有做大量数据集的验证,后期会做一些实际的验证,请持续关注。如果乐意与我交流,文章后面有联系方式,随时欢迎。代码地址码云:https://gitee.com/lizhigong/VoiceprintRecognition
- NPU-ASLP实验室11篇论文被语音旗舰会议Interspeech2023录用
语音之家
语音之家活动专区人工智能语音识别
作为语音相关研究领域的旗舰国际会议,INTERSPEECH2023将于8月20-24日在爱尔兰都柏林举办。西工大音频语音与语言处理研究组(ASLP@NPU)本届会议将携合作伙伴宣读论文11篇,涉及智能语音处理领域的众多研究方向,包括语音识别、语音合成与转换、语音翻译、说话人识别等。论文的合作单位包括:腾讯、网易、华为、字节跳动、出门问问、滴滴出行、阿里巴巴等。以下是本届会议发表论文的相关信息,附带
- 达摩院开源工业级说话人识别模型CAM++
语音之家
智能语音人工智能深度学习机器学习
近日,达摩院正式向公众开源工业级说话人识别通用模型CAM++,兼顾准确率和计算效率,训练labels类别达20万,每类含20~200条梅尔频谱特征。当前该模型已上线Modelscope魔搭社区,后续将陆续开源针对各场景优化的工业级模型。模型下载地址:https://www.modelscope.cn/models/damo/speech_campplus_sv_zh-cn_16k-common/s
- 三点几嚟,饮茶先啦!PaddleSpeech发布全流程粤语语音合成
飞桨PaddlePaddle
技术干货人工智能语音识别深度学习机器学习
PaddleSpeech是飞桨开源语音模型库,其提供了一套完整的语音识别、语音合成、声音分类和说话人识别等多个任务的解决方案。近日,PaddleSpeech迎来了重要更新——r1.4.0版本。在这个版本中,PaddleSpeech带来了中文wav2vec2.0fine-tune流程、升级的中英文语音识别以及全流程粤语语音合成等重要更新。接下来,我们将详细介绍这些更新内容以及亮点。中文wav2vec
- 语音数据添加噪声
末世灯光
python语音识别个人通过各种教程的总结语音识别人工智能python
语音数据添加高斯噪声或白噪声,取决于所需要的应用场景。如果需要模拟真实世界中的环境噪声,例如在语音识别或说话人识别任务中,通常会使用高斯噪声来模拟背景噪声。因为真实的环境噪声往往也是由许多不同频率和强度的声波混合而成,而高斯噪声正好能够模拟这种混合声波的效果。此外,由于语音信号与高斯噪声之间存在一定的相关性,因此使用高斯噪声可以更好地模拟真实环境中的语音信号。#设置噪声级别noise_level=
- 【论文阅读】X-vectors: Robust DNN Embedding for Speaker Recognition
abcdhhhh_
论文阅读dnn深度学习
文章链接参考关键词说话人识别、DNN、数据增强、x-vectors主要工作本文所用的DNN可接受任意长度的输入,并转换成固定长度的表达(即x-vector)。(在训练数据量不足的情况下,采用了数据增强)(与i-vector对比,发现数据增强对i-vector没有帮助,但对x-vectorDNN帮助很大)本文所用DNN的结构可参见另一篇文章(文章链接),如图所示:包括多层时间延迟结构、1层统计池化层
- python语音识别技术实验报告_语音识别系统实验报告.docx
RUI老师
语音识别系统实验报告概要语音识别系统实验报告专业班级:信息安全学号:姓名:目录设计任务及要求………………………………………………1语音识别的简单介绍2.1语者识别的概念……………………………………………22.2特征参数的提取……………………………………………32.3用矢量量化聚类法生成码本………………………………32.4VQ的说话人识别…………………………………………4算法程序分析3.1函数关系…
- 以应用为导向,看声纹识别中的音频伪造问题
语音之家
智能语音网络语音识别人工智能
声纹识别,又称说话人识别,是根据语音信号中的声纹特征来识别话者身份的过程,也是一种重要的生物认证手段。历经几十年的研究,当前声纹识别系统已取得了令人满意的性能表现,并在安防、司法、金融、家居等诸多领域中完成部署,有着广阔的应用前景。然而,大量证据表明,这些系统在实际应用中容易受到恶意伪造行为的影响,致使系统的安全性存在很大隐患,在很大程度上限制了声纹识别技术的大规模推广应用。为了解决这一安全隐患,
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {