- flask部署机器学习_如何开发端到端机器学习项目并使用Flask将其部署到Heroku
cumichun6193
大数据python机器学习人工智能深度学习
flask部署机器学习There'sonequestionIalwaysgetaskedregardingDataScience:关于数据科学,我经常被问到一个问题:WhatisthebestwaytomasterDataScience?Whatwillgetmehired?掌握数据科学的最佳方法是什么?什么会雇用我?Myanswerremainsconstant:Thereisnoalterna
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 关联规则算法学习—Apriori
Did然
数据挖掘算法学习python数据挖掘
关联规则算法学习—Apriori一、实验项目:关联规则算法学习项目性质:设计型二、实验目的:理解并掌握关联规则经典算法Apriori算法,理解算法的原理,能够实现算法,并对给定的数据集进行关联规则挖掘三、实验内容:1、实现Apriori算法,验证算法的正确性,并将算法应用于给定的数据集Groceries,根据设定的支持度和置信度,挖掘出符合条件的频繁项集及关联规则。2、挑选几个有代表性的频繁项集和
- 第八章:LeRobot摄像头配置与应用指南
贾全
实战具身智能机器人深度学习人工智能算法机器学习机器人
引言在机器人学习系统中,视觉感知是至关重要的组成部分。摄像头作为机器人的"眼睛",为系统提供环境信息,使机器人能够理解周围世界并做出相应的决策。LeRobot作为一个完整的机器人学习框架,提供了灵活且强大的摄像头支持系统,能够适配多种类型的摄像头设备。本章将详细介绍LeRobot的摄像头配置和使用方法,帮助读者掌握如何在机器人学习项目中有效地集成和使用视觉系统。8.1LeRobot摄像头系统架构L
- 《量化开发》系列 第 1 篇:金融知识基础入门指南(附 GitHub 学习项目)
Natsume1710
金融github学习
本文为《量化开发学习路线与知识点》专栏的第一篇参考项目:Awesome-QuantDev-Learn量化金融是金融经济学与计算机科学交叉融合形成的新兴行业,越来越多的技术人才正积极投身其中。然而,面对纷繁复杂的金融概念与专业的开发技能,许多人常常感到无从下手。本专栏将为C++/Python工程师、自学者、量化岗求职者提供系统清晰的学习路径。本篇文章聚焦于量化开发所需的金融基础知识,帮助技术人打下坚
- 【零基础学AI】第9讲:机器学习概述
1989
0基础学AI人工智能机器学习pythonnumpydevops开源
本节课你将学到理解什么是机器学习,以及它与传统编程的区别掌握监督学习、无监督学习的基本概念使用scikit-learn完成你的第一个机器学习项目构建一个完整的iris花朵分类器开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseaborn前置知识基本的Python语法(
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- LangChain4j入门学习项目
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、LangChain4j技术概览与环境搭建1.1LangChain4j核心价值解析大模型集成统一API优势[2][6]Java生态下RAG/Agent等高级模式支持[13][14]1.2开发环境配置全流程JDK17+与SpringBoot3.x环境准备[12][13]Maven依赖管理(核心库
- Day33 MLP神经网络的训练
cylat
python打卡神经网络人工智能深度学习python
目录一、PyTorch和cuda的安装二、查看显卡信息的命令行命令(cmd中使用)三、cuda的检查四、简单神经网络的流程1、数据预处理(归一化、转换成张量)2、模型的定义3、定义损失函数和优化器4、定义训练流程5、可视化loss过程一、PyTorch和cuda的安装后续完成深度学习项目中,主要使用的包为pytorch,所以需要安装,需要去配置一个新的环境。未来在复现具体项目时候,新环境命名最好是
- 春招Java上岸指南:从0到1的备战全攻略
个人主页:java之路-CSDN博客(期待您的关注)目录春招前的自我评估与目标设定核心知识巩固与提升Java基础知识数据结构与算法多线程与并发编程数据库知识框架学习项目经验积累与优化回顾现有项目参与开源项目打造个人项目面试准备与技巧提升简历撰写常见面试题解析模拟面试面试技巧与注意事项春招实战与心态调整春招信息收集投递策略面试实战应对心态调整春招前的自我评估与目标设定在开始春招备战之前,首先要对自己
- 机器学习项目微服务离线移植
LensonYuan
Python工程落地项目发布深度学习机器学习微服务人工智能项目发布环境移植
机器学习项目微服务离线移植引言:为什么需要Docker化机器学习项目?在当今的机器学习工程实践中,项目部署与移植是一个常见但极具挑战性的任务。传统部署方式面临着"在我机器上能运行"的困境——开发环境与生产环境的不一致导致的各种兼容性问题。Docker技术通过容器化解决方案,完美地解决了这一痛点。本文将详细介绍如何将一个基于Python和FastAPI的机器学习项目进行Docker化封装,实现服务的
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- Sklearn 机器学习 缺失值处理 对多数据列做缺失值填充
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:对多列数据进行缺失值填充的正确姿势✨在实际的机器学习项目中,我们经常会遇到缺失值(MissingValues)问题。尤其是当数据集包含多个列且存在不同类型(数值型、分类型)缺失时,如何高效、
- python打卡day31
今日的示例代码包含2个部分1.notebook文件夹内的ipynb文件,介绍下今天的思路2.项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾1.规范的文件命名2.规范的文件夹管理3.机器学习项目的拆分4.编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。@疏锦行
- 微信小程序-功德木鱼(含设置面板功能)
weixin_48077625
微信小程序前端小程序
基于微信小程序所开发的电子木鱼项目,十分适合作为微信小程序开发初学者在完成前端基础学习后进行练手学习项目。##功能亮点:计数器、敲击震动效果、设置面板(自定义漂浮文字内容、可选择文字颜色、可选择木鱼样式)一、界面展示二、功能介绍自动计数木鱼敲击动画文字上飘动画敲击震动设置面板自定义漂浮文字可选择字体颜色可选择木鱼样式三、核心代码setting(){this.setData({isSetting:t
- vscode连接本地Ubuntu
黑牛先生
ubuntulinux运维
因为在学习项目的时候,自己的云服务器性能太差一直要编译很长时间,而且总是连接失败,所以搞了一个Ubuntu25.04的系统在自己的VMware中。其中参考了以下文章。Ubuntu24.04桌面版安装指南(2025版)|官网镜像下载+启动盘制作+保姆级图文教程(全网最详)_ubuntu官网镜像下载-CSDN博客将VMware虚拟机移到其它磁盘(C盘->D盘)_vmware如何从c盘移到别的盘-CSD
- Deep Lake 简介
DeepLake简介DeepLake是由Activeloop开发的一款开源深度学习数据湖(DeepLearningDataLake),专为人工智能时代设计,旨在解决深度学习项目中数据管理的复杂性与低效问题。核心特点特性说明多模态数据支持支持图像、视频、音频、文本、点云等多种数据类型,适用于各类AI场景。张量存储数据以张量格式存储,兼容主流深度学习框架(如PyTorch、TensorFlow)。数据
- python训练营打卡第31天
文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。补充介绍:pyc文件的介绍知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解昨天我们已经介绍了如何在不同的文件中,导入其他目录的文件,核心在于了解导入方式和python解释器检索目录的方式。搞清楚了
- 60天python训练计划----day31
尘浮728
python机器学习深度学习
DAY31文件的规范拆分和写法今日的示例代码包含2个部分notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。#
- 使用Python和Scikit-Learn实现机器学习模型调优
Blossom.118
机器学习与人工智能机器学习人工智能scikit-learn开发语言目标检测python深度学习
在机器学习项目中,模型的性能往往取决于多个因素,其中模型的超参数(hyperparameters)起着关键作用。超参数是模型在训练之前需要设置的参数,例如决策树的深度、KNN的邻居数等。合理地选择超参数可以显著提升模型的性能。Scikit-Learn是一个功能强大的机器学习库,它提供了多种工具来帮助我们进行模型调优。本文将通过一个具体的例子,介绍如何使用Scikit-Learn进行模型调优。一、环
- 使用Python和Flask构建简单的机器学习API
Blossom.118
机器学习与人工智能pythonflask机器学习深度学习人工智能目标检测数据挖掘
在机器学习项目中,将模型部署为一个WebAPI是一种常见的需求。这样可以方便地将模型集成到其他应用程序中,例如移动应用、Web应用或其他后端服务。Flask是一个轻量级的PythonWeb框架,非常适合用于构建简单的API。本文将通过一个具体的例子,介绍如何使用Flask将一个机器学习模型部署为一个WebAPI。一、环境准备在开始之前,请确保你的开发环境中已经安装了Python、Flask和Sci
- 机器学习复习3--模型的选择
谢耳朵(wer~wer~)
机器学习机器学习人工智能
选择合适的机器学习模型是机器学习项目成功的关键一步。这通常不是一个一蹴而就的过程,而是需要综合考虑多个因素,并进行实验和评估。1.理解问题本质这是模型选择的首要步骤。需要清晰地定义试图解决的问题类型:监督学习:数据集包含输入特征和对应的标签(目标变量)分类:目标变量是离散的类别。例如,判断邮件是否为垃圾邮件(是/否),图像识别(猫/狗/鸟),客户流失预测(流失/不流失)。需要考虑的问题:二分类还是
- 5.20 打卡
分散406
人工智能
DAY31文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。heart_disease_prediction/│├──data/#数据文件夹│├──raw/#原始数据││└──heart.csv#120mg/dl(0/1)'restecg',#静息心电图结果(0/1/2)'
- pycharm的环境管理-ChatGPT4o作答
部分分式
pycharmidepython
在PyCharm中,环境管理非常直观,PyCharm提供了工具来创建、配置和切换Python环境。以下是详细介绍:1.PyCharm的环境管理概述PyCharm支持以下类型的Python环境:系统解释器:使用操作系统全局安装的Python。虚拟环境(venv或virtualenv):推荐使用,便于项目之间的隔离。Conda环境:适合科学计算、数据分析或机器学习项目。远程环境:如Docker容器、S
- Rust实现的toydb:分布式SQL数据库学习项目
爱你不会累
本文还有配套的精品资源,点击获取简介:toydb是一个用Rust语言开发的分布式SQL数据库学习项目,它旨在帮助开发者深入理解数据库系统的工作原理,特别是SQL查询处理、分布式计算和数据一致性。通过这个项目,开发者可以探索Rust语言的内存安全特性、并发处理能力,并了解分布式数据库的复杂性。项目中涉及到了SQL的解析与执行、分布式技术如分片和复制、Raft一致性算法以及多版本并发控制(MVCC)等
- Python打卡训练营day31——2025.05.20
莱茵菜苗
Python打卡python开发语言
知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。导入依赖库#忽视警告importwarningswarnings.simplefilter('ignore')#数据处理importnumpyasnpimportpandasaspd#数据可视化importmatplotlib.pyplotas
- python学习day31
一叶知秋秋
python学习笔记学习
文件的规范拆分和写法今日的示例代码包含2个部分1.notebook文件夹内的ipynb文件,介绍下今天的思路2.项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾1.规范的文件命名2.规范的文件夹管理3.机器学习项目的拆分4.编码格式和类型注解机器学习的流程数据加载:命名参考:load_data.py、data_loader.py数据可视化
- Python训练打卡Day31
编程有点难
Python学习笔记python开发语言
文件的规范拆分和写法知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解把一个文件,拆分成多个具有着独立功能的文件,然后通过import的方式,来调用这些文件。1.可以让项目文件变得更加规范和清晰2.可以让项目文件更加容易维护,修改某一个功能的时候,只需要修改一个文件,而不需要修改多个文件。3.文件变得更容易复用,部分通用的文件可以单独拿出来,进行其他项目的复用。回顾机器学
- 【GitHub开源项目实战】DeOldify 图像与视频自动上色系统实战详解:GAN 架构、历史影像修复与工程部署路径解析
观熵
GitHub开源项目实战github开源音视频人工智能大模型
开源实战分析系列|DeOldify图像与视频自动上色系统实战详解:GAN架构、历史影像修复与工程部署路径解析关键词图像着色、视频上色、GAN、历史影像修复、自注意力机制、旧照片恢复、深度图像增强、生成对抗网络、PyTorch、开源部署摘要DeOldify是一个专注于黑白照片与视频自动上色的开源深度学习项目,基于增强型GAN(生成对抗网络)架构,并引入自注意力机制(Self-AttentionGAN
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比