The Representer Theorem, 表示定理.

Kernel Methods (6) The Representer Theorem

The Representer Theorem, 表示定理.
给定:

  • 非空样本空间: χχ
  • mm个样本:{(x1,y1),,(xm,ym)},xiinχ,yiR{(x1,y1),…,(xm,ym)},xiinχ,yi∈R
  • 非负的损失函数: J:(χ×R2)mR+J:(χ×R2)m→R+. 这个符号表示初看挺别扭的, 从wikipedia上抄来的. 含义是JJm×3m×3个参数, 3代表: 样本xixi (一个χχ)+ 它的目标值yiyi(一个RR) + 估计值 f(xi)f(xi) (另一个RR)
  • 一个正半定kernel function : κ:χ2Rκ:χ2→R
  • κκ对应的再生核希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS) HH
  • 一个递增函数gg
    优化问题:
    argminhJ=argminhJ(x1,y1,h(x1),,xm,ym,g(||h||2))argminhJ=argminhJ(x1,y1,h(x1),…,xm,ym,g(||h||2))

    如果hHh∗∈H是一个最优解,hh∗必具有以下形式:
    h=i=1mαiκ(xi,)h∗=∑i=1mαiκ(xi,⋅)

可能是理解不够吧, 感觉也就那样:

  • SVM要去掉bias才符合.(将xx增广可将bb并入ww处理)
  • 只说明形式, 对得到αα的值并没有帮助.

所以证明就不管了, 知道有这么回事就行了. 以后若需要深入了解, 可以参考pdf

你可能感兴趣的:(Machine,Learning)