darknet 源码阅读(数据预处理篇)—— voc_label.py

darknet 源码阅读(一)——yolo 数据预处理篇(voc_label.py)

简介

  • 本文都是基于darknet-AB版本源码进行解读。源码链接:https://github.com/AlexeyAB/darknet
  • voc——label.py 是yolo训练前数据预处理一部分,主要功能: 根据VOC数据集 ImageSets\Main目录下的train.txt、test.txt val.txt读取txt文件中图片名字,进而读取 Annotations\ 目录下对应的xml文件内坐标等信息进行处理,主要是groud truth x,y需要转化为groud truth 的中心坐标,进一步 框的x_center,y_center,w,h归一化到0-1。最终生成一个labels目录(用来保存x ,y,w,h,一张图片一个txt)和2007_train.txt和 2007_val.txt,2007_test.txt(这里假设years ).下面代码会详细介绍流程。

代码

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
# 2012代表年份, 2012train.txt 就是ImageSets\Main 下对应的txt名称,其依次类推, 换成自己数据集需修改sets
sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

# classes 是所有类别名称, 换成自己数据集需要修改classes
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

#@params  size  图片宽高 
#@params  box  groud truth 框的x y w h
def convert(size, box):
    dw = 1./size[0]              # 用于下面框的坐标和高宽归一化
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0     # 求中心坐标
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))    # 读取 image_id 的xml文件
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')      # 保存txt文件地址
    tree=ET.parse(in_file)            
    root = tree.getroot()
    size = root.find('size')         # 读取图片 w h
    w = int(size.find('width').text)  
    h = int(size.find('height').text)

    for obj in root.iter('object'): 
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b) # w,h,x,y归一化操作
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')   # 一个框写入 

wd = getcwd() # 获取当前地址

for year, image_set in sets:
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()  # 读取图片名称
    list_file = open('%s_%s.txt'%(year, image_set), 'w')                                                                                    # 保存所有图片的绝对路径
    for image_id in image_ids:                                                                                                                        
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))                            
        convert_annotation(year, image_id)
    list_file.close()


你可能感兴趣的:(计算机视觉,深度学习,darknet,darknet源码阅读)