- 学 Simulink:实时系统与嵌入式部署类场景ROS + Simulink 联合仿真的多传感器信号融合与滤波模块
amy_mhd
simulinkmatlab
目录ROS+Simulink联合仿真的多传感器信号融合与滤波模块场景目标✅准备工作软件安装:硬件准备(可选):步骤详解第一步:创建Simulink模型并配置ROS支持启用ROS工具箱支持:第二步:添加ROS输入接口(接收传感器数据)使用Subscribe模块接收ROSTopic数据:第三步:设计滤波与信号预处理模块方法一:IMU数据滤波(加速度+角速度)方法二:卡尔曼滤波器(KalmanFilte
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- 信号处理算法仿真:卡尔曼滤波算法_(2).卡尔曼滤波器的数学理论
kkchenkx
信号仿真2算法信号处理机器学习
卡尔曼滤波器的数学理论卡尔曼滤波器(KalmanFilter)是一种高效的递归滤波器,用于从一系列不完全和含有噪声的测量数据中估计系统的状态。它在许多领域都有广泛的应用,包括控制系统、导航系统、计算机视觉等。本节将详细介绍卡尔曼滤波器的数学理论,包括其基本假设、状态空间模型、预测和更新步骤以及具体实现方法。卡尔曼滤波器的基本假设卡尔曼滤波器基于以下基本假设:线性系统:系统的状态转移和测量过程都可以
- 第十天 高精地图与定位(SLAM、RTK技术) 多传感器融合(Kalman滤波、深度学习)
MarkHD
车联网深度学习人工智能
前言在自动驾驶技术快速发展的今天,高精地图与多传感器融合已成为实现L4/L5级自动驾驶的核心支柱。本文将从零基础角度,通过具体场景案例,深入解析SLAM、RTK、Kalman滤波等关键技术原理,并附MATLAB/Python代码实例演示,帮助读者构建完整知识体系。一、自动驾驶的"数字视网膜":高精地图1.1高精地图的核心特征高精地图与传统导航地图的本质区别体现在三个维度:厘米级精度:误差范围<20
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接
MATLAB卡尔曼
卡尔曼专题免费专栏matlab开发语言
本文所述代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录简介运行结果MATLAB源代码简介代码分为以下几个部分:初始化部分清理工作区环境,设置随机数种子,定义时间序列。定义过程噪声协方差矩阵Q和观测噪声协方差矩阵R。初始化真实状态矩阵X、观测
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,订阅专栏后可直接查看完整代码
MATLAB卡尔曼
MATLAB定位程序与详解matlab开发语言
这段代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录运行结果MATLAB源代码程序介绍代码逻辑结构代码详细介绍初始化部分运动模型扩展卡尔曼滤波(EKF)绘图误差输出运行结果状态量曲线:误差曲线:误差CDF曲线(越靠近左上表示误差整体越小):M
- 图像处理与计算机视觉的经典书籍
2401_87556630
图像处理计算机视觉人工智能
[1960Kalman]ANewApproachtoLinearFilteringandPredictionProblemsKalman[1970]Least-squaresestimation_fromGausstoKalman[1997SPIE]ANewExtensionoftheKalmanFiltertoNonlinearSystem[2000]TheUnscentedKalmanFilt
- Kalman算法、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的比较
dragon_perfect
技术积累经典kalman的扩展应用kalmanpythonkalman算法
目录一、Kalman算法Kalman算法优缺点:二、扩展卡尔曼滤波(EKF)原理:扩展Kalman算法优缺点:步骤简化:优点简化:缺点简化:三、无迹卡尔曼滤波(UKF)Unscented滤波的主要优点:原理:步骤:优点:缺点:四、对比总结:五、选择建议六、示例应用七、代码资源一、Kalman算法卡尔曼(Kalman)于1960年提出的,卡尔曼(Kalman)滤波是一种线性最小方差估计。该递推算法可
- 【课题推荐】多速率自适应卡尔曼滤波(MRAKF)用于目标跟踪
MATLAB卡尔曼
免费的小例程课题推荐与讲解目标跟踪人工智能计算机视觉
多速率自适应卡尔曼滤波(Multi-RateAdaptiveKalmanFilter,MRAKF)是一种针对多传感器异步数据融合的滤波算法,适用于传感器采样率不同、噪声特性时变的目标跟踪场景。本文给出一个多速率自适应卡尔曼滤波框架,以无人机跟踪场景为例,融合IMU和GPS数据文章目录背景多速率自适应卡尔曼滤波(MRAKF)简介应用背景代码样例代码运行结果代码介绍关键特性总结背景多速率自适应卡尔曼滤
- BOT-SORT完整跟踪代码详解(bot_sort.py)
兔子爆锤
python开发语言目标跟踪机器学习算法人工智能计算机视觉
1.伪代码2.STrack类#这个类是用来存放轨迹的,每个轨迹都有一些自己的属性,例如id、边界框、预测框、状态等等#继承BaseTrack的单个track类classSTrack(BaseTrack):shared_kalman=KalmanFilter()def__init__(self,tlwh,score,feat=None,feat_history=50):#bboxsscore得分#w
- RFID技术在机器人中的核心应用场景及技术实现
小赖同学啊
智能硬件机器人python人工智能
一、机器人定位与导航1.地标定位系统实现方式:在环境关键点部署无源RFID标签(如UHFTag),机器人携带读写器通过读取标签ID实现绝对定位#伪代码:RFID地标定位defget_robot_position():detected_tags=reader.read_tags()known_positions={tag1:(x1,y1),tag2:(x2,y2)}returnkalman_filt
- 电机控制常见面试问题(十)
小雀丝
嵌入式硬件单片机电机控制电机
文章目录一、Kalman滤波器的原理以及EKF(扩展卡尔曼滤波)的概念1.理解Kalman滤波器2.理解EKF3.总结二、滑动平均滤波器的设计1.定义与原理2.关键参数设计3.与其它滤波器对比三.PID与MPC的区别四.李雅普诺夫稳定性的概念五.谈一下对电感与电容的理解一、Kalman滤波器的原理以及EKF(扩展卡尔曼滤波)的概念1.理解Kalman滤波器什么是Kalman滤波器?——用“天气预报
- STM32应用(六)一阶卡尔曼滤波代码和简单应用
2401_87557129
stm32嵌入式硬件单片机
STM32应用(五)基于输入捕获的超声波HC-SR04模块使用1.一阶卡尔曼滤波代码实现1.1Kalman滤波代码1.1.1Kalman.c文件#include"Kalman.h"voidKalman\_Init(){kfp.Last_P=1;kfp.Now_P=0;kfp.out=0;kfp.Kg=0;kfp.Q=0;kfp.R=0.01;}/\*\*\*卡尔曼滤波器\*@paramKalman
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 基于 MATLAB仿真卡尔曼滤波原理及应用
资深码侬
matlabmatlab开发语言
基于MATLAB仿真卡尔曼滤波原理及应用简介:《卡尔曼滤波原理及应用:MATLAB仿真》主要介绍数字信号处理中的卡尔曼(Kalman)滤波算法及在相关领域应用。《卡尔曼滤波原理及应用:MATLAB仿真》共7章。第1章为绪论。第2章介绍MATLAB算法仿真的编程基础。第3章介绍线性Kalman滤波。第4章讨论扩展Kalman滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。第5章介绍UKF滤波算法
- 端到端自动驾驶的分布式传感器融合架构
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
自动驾驶,分布式传感器融合,深度学习,计算机视觉,雷达,lidar,惯性导航,Kalman滤波,决策控制1.背景介绍自动驾驶技术作为未来交通运输的重要发展方向,近年来取得了显著进展。然而,实现真正安全的自动驾驶仍然面临着诸多挑战,其中之一就是如何有效地融合来自不同传感器的数据,构建一个可靠的感知、决策和控制系统。传统的自动驾驶系统通常依赖于单一传感器,例如摄像头或雷达,这会导致感知信息的缺失和鲁棒
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 组合导航中Kalman滤波算法相关知识简述
十八与她
捷联惯导算法与组合导航原理算法机器学习人工智能组合导航惯导
组合导航中Kalman滤波算法相关知识简述温馨提示:阅读本篇博文内容,需要读者具备一定的Kalman滤波基础知识上图即为Kalman滤波算法的框架,分为预测(时间更新)和更新(量测更新)两部分,其参数估计的过程就是两者循环迭代的过程。预报,就是根据系统状态方程,从前一时刻状态预测当前时刻的状态的过程,可理解成对系统的先验知识的一种推算。预报中,状态估计和它的方差协方差阵也要给出,从方差协方差阵P的
- 卡尔曼滤波记录
qq_30362711
优化与求解机器学习
参考这个:https://www.kalmanfilter.net/alphabeta.html。这个吊打其他一切教程
- 【IMU Kalman滤波器】9轴IMU传感器(加速度计、陀螺仪、磁力计)的卡尔曼滤波器算法研究(Matlab代码实现)
然哥爱编程
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、9轴IMU传感器原理及误差分析三、卡尔曼滤波器算法四、实验与结果分析五、结论与展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努
- 基于卡尔曼滤波的系统参数辨识matlab仿真
软件算法开发
MATLAB程序开发#参数辨识matlab网络
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理4.1、卡尔曼滤波的基本原理4.2、基于卡尔曼滤波的系统参数辨识5.完整程序1.程序功能描述通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。2.测试软件版本以及运行结果展
- 2-80 基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪
顶呱呱程序
matlab工程应用matlab汽车算法形态学处理冒泡法kalman视频跟踪滤波
基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪。检测汽车中心和最大半径,与背景差分选择较大差异的区域进行形态学处理,用冒泡法对目标面积从大到小排序。程序已调通,可直接运行。2-80kalman视频跟踪滤波-小红书(xiaohongshu.com)
- Kalman滤波参数、调整原则
Terry Cao 漕河泾
VSLAM人工智能算法
1.Q、P、R关系P的迭代为P=QTPQ;R为观测的协方差;状态延时高,说明收敛速度慢。估计参数P越大,收敛的越快。测量误差R越小,收敛的越快。调整这两个参数即可,从状态更新上说,测量误差越小,估计参数误差越大,说明我们越相信测量值,自然收敛的快。缺点就是会让系统变化过快,如果测量值更加不准,则精度会下降,系统不够稳定。2.K与Q、R关系k~Q/(R+Q)P0/(Q+R),收敛的快慢程度。总结下自
- 如何利用BibTex生成论文参考文献列表
写完就会了
解决问题Latex参考文献BibTex
如何利用BibTex生成论文参考文献列表Step1:先在GoogleScholar上找到BibTeX条目信息导出来;如下:@article{chowdhary2010aerodynamic,title={AerodynamicparameterestimationfromflightdataapplyingextendedandunscentedKalmanfilter},author={Chow
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- GNSS定位技术总结与PPP定位技术
Code_ADing
算法人工智能学习GNSS笔记全球卫星导航系统RTK
1.统一观测值方程2.PPP方程构建站间单差方程如下:同样的,设计矩阵也更加庞大:站间单差消除了卫星轨道、卫星钟、电离层、对流层以及卫星端的伪距和载波硬件延迟的影响。但在PPP中,我们无法通过站间单差消除这些影响,所以需要挨个考虑:3.PPP中的Kalman滤波4.PPP技术概述精密单点定位技术(precisepointpositioning,PPP),可以使用单台接收机在全球任何位置获得高精度的
- 2024.1.30 GNSS 学习笔记
Code_ADing
GNSS日常学习零散知识点学习笔记GNSS算法全球导航定位系统
站星双差Kalman滤波伪距差分定位流程1.RTK定位技术(实时载波相位差分技术)原理-站间单差浮点解1.RTK技术其实就是在RTD技术的基础上增加载波观测值的使用。由于伪距的噪声在分米量级,即使我们通过站间单差消除了绝大部分的误差影响,但受限于伪距的精度,我们也只能达到分米量级的定位水平。但载波不同,载波的精度在毫米量级,所以如果其他误差完全消除的话,理论上定位精度可达到的毫米水平。毫米水平的定
- 【目标跟踪】多相机环视跟踪
读书猿
目标跟踪人工智能自动驾驶
文章目录一、前言二、流程图三、实现原理3.1、初始化3.2、输入3.3、初始航迹3.4、航迹预测3.5、航迹匹配3.6、输出结果四、c++代码五、总结一、前言多相机目标跟踪主要是为了实现360度跟踪。单相机检测存在左右后的盲区视野。在智能驾驶领域,要想靠相机实现无人驾驶,相机必须360度无死角全覆盖。博主提供一种非深度学习方法,采用kalman滤波+匈牙利匹配方式实现环视跟踪。有兴趣可以参考往期【
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少