numpy产生随机数

本文转自博客:http://blog.csdn.net/jinxiaonian11/article/details/53143141


在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常全的自动产生数据API,是学习数据分析的第一步。 
总体来说,numpy.random模块分为四个部分,对应四种功能: 
1. 简单随机数: 产生简单的随机数据,可以是任何维度 
2. 排列:将所给对象随机排列 
3. 分布:产生指定分布的数据,如高斯分布等 
4. 生成器:种随机数种子,根据同一种子产生的随机数是相同的 

以下是详细内容以及代码实例:(以下代码默认已导入numpy:import numpy as np )


1. 生成器

电脑产生随机数需要明白以下几点: 
(1)随机数是由随机种子根据一定的计算方法计算出来的数值。所以,只要计算方法一定,随机种子一定,那么产生的随机数就不会变。 
(2)只要用户不设置随机种子,那么在默认情况下随机种子来自系统时钟(即定时/计数器的值) 
(3)随机数产生的算法与系统有关,Windows和Linux是不同的,也就是说,即便是随机种子一样,不同系统产生的随机数也不一样。 
numpy.random 设置种子的方法有:

函数名称 函数功能 参数说明
RandomState 定义种子类 RandomState是一个种子类,提供了各种种子方法,最常用seed
seed([seed]) 定义全局种子 参数为整数或者矩阵

代码示例:

np.random.seed(1234) #设置随机种子为1234


2. 简单随机数

函数名称 函数功能 参数说明
rand(d0, d1, …, dn) 产生均匀分布的随机数 dn为第n维数据的维度
randn(d0, d1, …, dn) 产生标准正态分布随机数 dn为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
random_sample([size]) 在[0,1)内产生随机数 size:随机数的shape,可以为元祖或者列表,[2,3]表示2维随机数,维度为(2,3)
random([size]) 同random_sample([size]) 同random_sample([size])
ranf([size]) 同random_sample([size]) 同random_sample([size])
sample([size])) 同random_sample([size]) 同random_sample([size])
choice(a[, size, replace, p]) 从a中随机选择指定数据 a:1维数组 size:返回数据形状
bytes(length) 返回随机位 length:位的长度

代码示例

>>> import numpy as np
>>> print(np.random.rand(2,3))  #产生2行三列均匀分布随机数组
[[ 0.00764233  0.3830022   0.55875737]

 [ 0.33188605  0.63720051  0.69983149]]

>>> print(np.random.randn(3,3))  #三行三列正态分布随机数据
[[-2.25581993  0.28401035 -0.39071727]
 [ 0.3554526  -0.79093564 -0.31146916]

 [ 1.02469652  0.12776135  2.28273697]]

>>> print(np.random.randint(1,100,[5,5]))   #(1,100)以内的5行5列随机整数
[[ 3  8 17 93 18]
 [49 88 24 74 90]
 [31 49 36 20 33]
 [ 6 10 91 82 18]

 [26  8 76 90 55]]

>>> print(np.random.random(10))  #(0,1)以内10个随机浮点数
[ 0.68046894  0.99589507  0.55610842  0.28758456  0.7304742   0.5175079

  0.06014449  0.58060165  0.03519808  0.77347185]

3. 分布

numpy.random模块提供了产生各种分布随机数的API:

函数名称 函数功能 参数说明
beta(a, b[, size]) 贝塔分布样本,在 [0, 1]内。  
binomial(n, p[, size]) 二项分布的样本。  
chisquare(df[, size]) 卡方分布样本。  
dirichlet(alpha[, size]) 狄利克雷分布样本。  
exponential([scale, size]) 指数分布  
f(dfnum, dfden[, size]) F分布样本。  
gamma(shape[, scale, size]) 伽马分布  
geometric(p[, size]) 几何分布  
gumbel([loc, scale, size]) 耿贝尔分布。  
hypergeometric(ngood, nbad, nsample[, size]) 超几何分布样本。  
laplace([loc, scale, size]) 拉普拉斯或双指数分布样本  
logistic([loc, scale, size]) Logistic分布样本  
lognormal([mean, sigma, size]) 对数正态分布  
logseries(p[, size]) 对数级数分布。  
multinomial(n, pvals[, size]) 多项分布  
multivariate_normal(mean, cov[, size]) 多元正态分布。  
negative_binomial(n, p[, size]) 负二项分布  
noncentral_chisquare(df, nonc[, size]) 非中心卡方分布  
noncentral_f(dfnum, dfden, nonc[, size]) 非中心F分布  
normal([loc, scale, size]) 正态(高斯)分布  
pareto(a[, size]) 帕累托(Lomax)分布  
poisson([lam, size]) 泊松分布  
power(a[, size]) Draws samples in [0, 1] from a power distribution with positive exponent a - 1.  
rayleigh([scale, size]) Rayleigh 分布  
standard_cauchy([size]) 标准柯西分布  
standard_exponential([size]) 标准的指数分布  
standard_gamma(shape[, size]) 标准伽马分布  
standard_normal([size]) 标准正态分布 (mean=0, stdev=1).  
standard_t(df[, size]) Standard Student’s t distribution with df degrees of freedom.  
triangular(left, mode, right[, size]) 三角形分布  
uniform([low, high, size]) 均匀分布  
vonmises(mu, kappa[, size]) von Mises分布  
wald(mean, scale[, size]) 瓦尔德(逆高斯)分布  
weibull(a[, size]) Weibull 分布  
zipf(a[, size]) 齐普夫分布  

代码示例

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> mu=1    #数学期望:1
>>> sigma=3   #标准差:3
>>> num=10000   #个数:10000
>>> rand_data = np.random.normal(mu, sigma, num)
>>> count, bins, ignored = plt.hist(rand_data, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2)), linewidth=2, color='r')
[]

>>> plt.show()

numpy产生随机数_第1张图片


4. 排列

函数名称 函数功能 参数说明
shuffle(x) 打乱对象x(多维矩阵按照第一维打乱) 矩阵或者列表
permutation(x) 打乱并返回该对象(多维矩阵按照第一维打乱) 整数或者矩阵

代码示例

>>> import numpy as np
>>> rand_data=np.random.randint(1,10,(3,4))
>>> print(rand_data)
[[4 4 6 9]
 [3 4 2 2]
 [3 9 3 3]]
>>> np.random.shuffle(rand_data)
>>> print(rand_data)
[[4 4 6 9]
 [3 9 3 3]
 [3 4 2 2]]

你可能感兴趣的:(python图像处理学习)