- 在Vue 3中,如何创建一个异步组件?
JJCTO袁龙
Vuevue.js前端javascript
在Vue3中,如何创建一个异步组件?在现代前端开发中,组件的重用性和异步加载是提升用户体验和优化性能的关键因素。在Vue3中,创建异步组件变得更为便利。本文将探讨如何在Vue3中使用setup语法糖来创建异步组件,并通过示例代码来深入理解这一特性。什么是异步组件?异步组件是一种在需要时才被加载的组件,而不是在应用启动时一次性加载所有组件。这种做法有助于减小初始加载的包大小,从而提升加载速度和响应性
- 保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)
emmm形成中
AI科技前沿pythonjavaai人工智能
保姆级教程:阿里QwQ-32B模型本地部署与企业级应用实战(附万字指南+工具链)目录QwQ-32B核心优势与技术突破本地部署全攻略:从环境配置到模型运行六大企业级应用场景深度解析实战案例:数学推理/代码生成/Agent能力测试常见问题与性能优化指南2025年技术展望与行业影响核心优势1.1模型技术突破维度QwQ-32B特性传统大模型对比参数规模320亿参数(仅需16GB显存)DeepSeek-R1
- DeepSeek开源周:面向大模型训练的三个工具包
花生糖@
AIGC学习资料库DeepSeek实用集DualPipeEPLBProfile-dataDeepseek
在2025年的开源周中,DeepSeek推出了一系列旨在优化大规模模型训练效率的工具。这些工具包括DualPipe、EPLB以及Profile-data,它们分别从不同的角度解决了万亿参数模型训练中的算力瓶颈问题,为行业带来了前所未有的加速和效率提升。DualPipe:双向流水线架构的创新DualPipe通过其首创的双向流水线架构,极大地提高了计算与通信的重叠率至92%,相比NVIDIAMegat
- 云原生服务网格:微服务通信的智能中
桂月二二
云原生微服务架构
引言:微服务通信的范式迁移Istio日均管理3000亿服务请求,LinkedIn通过服务网格降低40%网络延迟。阿里巴巴双十一流量洪峰时,MOSN支撑百万级TPS跨集群通信。GoogleAnthos实现跨云服务治理统一,Envoy代理处理Cilium的eBPF加速提升70%吞吐。CNCF调查显示78%企业采用服务网格,华为云ASM支持万级服务自动拓扑发现,AWSAppMesh延迟优化至亚毫秒级。一
- C++位运算:数据底层的二进制魔法
卫青~护驾!
算法c++青少年编程开发语言位运算
一、位运算的核心价值极速运算位运算直接操作内存中的二进制位,无需转换为十进制,执行效率比常规算术运算高10倍以上//传统方式if(n%2==0)//位运算优化if((n&1)==0)空间优化通过位掩码技术,可用单个整型变量存储32个布尔状态(每位代表一个状态)constintFLAG_A=1<<0;//00000001constintFLAG_B=1<<1;//00000010算法加速快速幂、位图
- 【QwQ-32B-Preview】阿里通义QwQ登场MATH测试超OpenAI o1,开源AI推理新王,为数不多可以与OpenAI o1媲美的模型之一
Yukuii_0v0
人工智能aiAI编程自然语言处理
阿里通义千问今天(11月28日)发布《QwQ:思忖未知之界》博文,推出了QwQ-32B-Preview实验性研究模型,在数学和编程领域,尤其在需要深度推理的复杂问题上,具备卓越的AI推理能力。它是少数能与OpenAI的o1匹敌的模型之一,并且是第一个能以宽松许可证下载的模型。QwQ-32B-Preview在Apache2.0许可证下“公开”可用,这意味着它可以用于商业应用。QwQ-32B-Prev
- DeepSeek开源第一弹!突破H800性能上限,FlashMLA重磅开源
开源项目精选
人工智能
FlashMLA是一个针对HopperGPU优化的高效MLA(Multi-HeadLatentAttention)解码内核,支持变长序列处理,现在已经投入生产使用。FlashMLA通过优化MLA解码和分页KV缓存,能够提高LLM(大语言模型)推理效率,尤其是在H100/H800这样的高端GPU上发挥出极致性能。说人话就是,FlashMLA是一种专门为Hopper高性能AI芯片设计的先进技术——一种
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- 如何提升OmniParser V2的小元素识别率——YOLOv8 增加 P2 层的性能变化解析
AI-AIGC-7744423
目标跟踪人工智能计算机视觉
YOLOv8增加P2层通过牺牲部分计算效率换取了小目标检测性能的显著提升,尤其适用于高分辨率、小目标密集的场景。开发者需根据具体任务需求,在精度与速度之间进行合理权衡,并通过模型轻量化技术优化部署效果。更多技术细节可参考微软等机构的开源实现136。YOLOv8增加P2层的性能变化解析一、性能提升方向小目标检测精度显著提高原理:P2层对应更高分辨率的浅层特征图(如1/4下采样),能捕捉更细粒度的纹理
- 初识开源云原生数仓Databend
开源项目精选
云原生
Databend是一款开源的数据仓库产品,主要定位于OLAP场景,采用云原生架构理念(可对比snowflake),有非常好的扩展性、同时具备低成本、高性能的优势,兼容MySQL协议。Stars数8,245Forks数765主要特点针对对象存储平台进行优化的云原生架构。符合SQL:2011标准,支持复杂查询和数据版本回溯(时间旅行)功能。与流行的商业智能(BI)、提取、转换和加载(ETL)以及数据科
- 设计模式之建造者模式:原理、实现与应用
wenbin_java
设计模式建造者模式
引言建造者模式(BuilderPattern)是一种创建型设计模式,它通过将复杂对象的构建过程分解为多个简单的步骤,使得对象的创建更加灵活和可维护。建造者模式特别适用于构建具有多个组成部分的复杂对象。本文将深入探讨建造者模式的原理、实现方式以及实际应用场景,帮助你更好地理解和使用这一设计模式。1.建造者模式的核心概念1.1什么是建造者模式?建造者模式是一种创建型设计模式,它将复杂对象的构建过程与其
- 必看!C# 与 HALCON 构建基于轮廓模板匹配实战宝典
AI_DL_CODE
机器视觉c#人工智能机器视觉HALCON模板匹配特征点匹配
摘要:本文专注于利用C#与HALCON实现基于轮廓的模板匹配技术。从环境搭建,即HALCON安装、C#项目创建及库引用配置,到核心步骤如初始化HALCON环境、读取图像、提取轮廓、创建模板、执行匹配及显示结果等,结合详尽代码示例进行阐述。还深入探讨在实际应用中的优化策略,包括图像预处理、参数精细调整、多模板匹配及实时匹配实现等。旨在助力读者全方位掌握技术,为机器视觉相关项目开发提供有力支撑,高效解
- Google Chrome 60版本的全新特性与优势
xinwuji312
本文还有配套的精品资源,点击获取简介:Chrome60是GoogleChrome浏览器的一个重大更新,它在2017年推出,为用户和开发者提供了多项改进。新版浏览器通过升级V8JavaScript引擎,增强WebAssembly支持,改进CSSGrid布局,更新ServiceWorker,增强安全性,改进开发者工具,增加新的WebAPI,优化性能,增强隐私控制以及支持64位架构,从而提升浏览体验和开
- 推荐一款好用的智能工单系统,有哪些智能化应用场景
运维人工智能
AI在ITSM的应用已经成为it服务管理的必然趋势,其中智能工单不仅能够帮助企业快速响应和处理各类IT问题,还能优化服务流程,降低运营成本。今天,我们就来探讨一下智能工单系统有哪些典型应用场景?以目前市场上一款备受好评的智能工单SaaS产品——轻帆云为例,看看它是如何在这些场景中发挥作用的。智能工单场景一:事件管理,桌面运维服务的得力助手企业日常运营中,桌面运维服务是最常见也最需要效率的一环。员工
- 【GreatSQL优化器-16】INDEX_SKIP_SCAN
数据库mysql
【GreatSQL优化器-16】INDEX_SKIP_SCAN一、INDEX_SKIP_SCAN介绍GreatSQL优化器的索引跳跃扫描(IndexSkipScan)是一种优化查询的技术,尤其在联合索引中用于减少扫描的无效行数。它通过"跳跃"式的扫描方式,避免了对索引中无用部分的扫描,从而提升查询效率。这种技术适合特定场景,并有一定的优缺点。索引跳跃扫描利用的是联合索引中非首列(非最左前缀)的索引
- 使用宝塔控制面板会遇到哪些问题怎么解决
ios
哈喽呀,大家好呀,淼淼又来和大家见面啦,上一期讲了宝塔控制面板的优势,这一期给大家分享一下在使用宝塔控制面板时,用户可能会遇到以下一些常见问题及相应的解决办法:1.系统资源占用过高问题描述:宝塔控制面板可能占用较多的系统资源,影响服务器性能。解决方法:优化宝塔配置,关闭不必要的服务或插件。监控并限制面板进程的资源使用。升级服务器硬件,如增加内存、使用更高性能的CPU。定期维护,清理无用数据和日志。
- spring源码之源码之单例bean的创建流程
zangs_zangsheng
spring源码springjava后端
单例bean是什么用人话讲就是你无论在哪调用这个bean注入这个bean,都是同一个bean。因此需要确保其线程安全。这通常通过无状态设计、同步机制或线程局部变量等方式实现在哪开始创建Bean?在刷新容器的时候,在刷新完成的前一步(finishBeanFactoryInitialization方法)创建Bean(非懒加载的单例bean)今天就从finishBeanFactoryInitializa
- DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加列宽调整功能,示例Table14基础固定表头示例
宝码香车
#DeepSeek前端vue.jsjavascriptecmascriptDeepSeek
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦目录DeepSeek助力Vue3开发:打造丝滑的表格(Table)之添加列宽调整功能,示例Table14基础固定表头示例页面效果指令输入think组件代码使用示例:实现说明:注意事项:代码测试测试代码正常跑通,附其他基本代码编写路由src\rou
- git常见问题之git pull时Automatic merge failed; fix conflicts and then commit the result.
信阳农夫
其他git
Administrator@PC-20151117FT04MINGW64/e/AsWorkspace/AndroidStudy(master)$gitpulloriginmaster--allow-unrelated-historiesFromgithub.com:nonfuxinyang/android-study *branch master ->FETCH_HEADAuto-m
- 前端开发中的实用场景:提升开发效率与用户体验
lina_mua
前端vue.jshtmljavascript
1.引言1.1前端开发的多样性前端开发不仅仅是编写HTML、CSS和JavaScript,还涉及用户体验、性能优化、数据可视化等多个方面。掌握实用场景的开发技巧,可以显著提升开发效率和用户体验。1.2本文的目标本文旨在总结前端开发中的实用场景,并提供相应的解决方案和最佳实践,帮助开发者更好地应对实际开发中的挑战。2.表单处理与验证2.1动态表单生成场景:根据用户输入或配置动态生成表单字段。解决方案
- 美颜sdk在实时音视频中的技术应用
Face Beauty美颜SDK
实时音视频美颜sdk视频特效美颜实时音视频
前言:FaceBeauty美颜SDK是由前相芯科技员工组建创办的新晋美颜厂商品牌,致力于为用户提供更真实自然的美颜效果,以极致性价比,降低高性能美颜的使用门槛。美颜SDK在实时音视频中的应用,通过集成图像处理算法与人工智能技术,实现了对视频流的实时美化处理,显著提升了用户体验。以下从技术模块、性能优化、应用场景及挑战等角度进行详细分析:一、核心技术模块与应用1.人脸检测与特征点定位美颜SDK通过深
- 大数据面试之路 (二) hive小文件合并优化方法
愿与狸花过一生
大数据大数据hivehadoop
大量小文件容易在文件存储端造成瓶颈,影响处理效率。对此,您可以通过合并Map和Reduce的结果文件来处理。一、合并小文件的常见场景写入时产生小文件:Reduce任务过多或数据量过小,导致每个任务输出一个小文件。动态分区插入:分区字段基数高,每个分区生成少量数据,形成大量小文件。频繁追加数据:通过INSERTINTO多次追加数据,导致文件碎片化。二、合并小文件的核心方法方法1:调整Reduce任务
- Win7 火狐浏览器 Mozilla Firefox 115.7.0esr下载地址(及Chrome、Supermium浏览器)
catoop
其他firefox
如题,官网下载地址:MozillaFirefox115.7.0esr已经发布,感兴趣的朋友可去官方下载!https://ftp.mozilla.org/pub/firefox/releases/115.7.0esr/其他方案:1、谷歌Chrome浏览器的109版本,即最后一个支持Win7的官方版本。2、Supermium浏览器。它是一款专门为老旧操作系统而优化的浏览器,使用了最新版本Chromiu
- Phi-4-multimodal:图、文、音频统一的多模态大模型架构、训练方法、数据细节
余俊晖
大语言模型多模态LLM多模态
Phi-4-Multimodal是一种参数高效的多模态模型,通过LoRA适配器和模式特定路由器实现文本、视觉和语音/音频的无缝集成。训练过程包括多阶段优化,确保在不同模式和任务上的性能,数据来源多样,覆盖高质量网络和合成数据。它的设计体现了小型语言模型在多模态任务上的潜力模型架构Phi-4-Multimodal的基础是Phi-4-Mini语言模型,这是一个3.8亿参数的模型,设计为高效处理文本任务
- 算法学习系列(四十五):DFS之剪枝与优化
lijiachang030718
算法深度优先算法学习c++剪枝程序人生笔记
目录引言DFS之剪枝与优化一、小猫爬山二、木棒三、数独四、总结引言关于这个DFSDFSDFS的剪枝和优化确实难度是非常的大,从我这篇文章的思路和代码量上就能看出来不是一般的难度,而且难度不亚于DPDPDP,而且这个DFSDFSDFS也是花费了我三天的时间才基本把这几道例题给搞懂了,并且这种题就是没有固定的模型和套路,每个题都不一样,只有你多做题,这样在考场上才能想到这道题好像跟之前做过的题有点相似
- 算法系列之深度/广度优先搜索解决水桶分水的最优解及全部解
修己xj
算法算法宽度优先
在算法学习中,广度优先搜索(BFS)适用于解决最短路径问题、状态转换问题等。深度优先搜索(DFS)适合路径搜索等问题。本文将介绍如何利用广度优先搜索解决寻找3个3、5、8升水桶均分8升水的最优解及深度优先搜索寻找可以解决此问题的所有解决方案。问题描述我们有三个水桶,容量分别为3升、5升和8升。初始状态下,8升的水桶装满水,其他两个水桶为空。我们的目标是通过一系列倒水操作,最终使得8升水桶中的水被均
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 3.1 Spring Boot性能优化:从线程池调优到JVM参数配置
Sendingab
Springboot从入门到精通零基础7天精通SpringBootspringboot性能优化jvm
markdown#SpringBoot性能优化:从线程池调优到JVM参数配置##引言在微服务架构中,SpringBoot作为主流开发框架,其性能直接影响系统的吞吐量和响应速度。本文将深入探讨从**线程池调优**到**JVM参数配置**的全链
- 计算机网络之应用层(电子邮件)
DKPT
#计算机网络算法计算机网络网络学习笔记
一、电子邮件的基本概念电子邮件(ElectronicMail,简称E-mail)是一种用电子手段提供信息交换的通信方式,它通过互联网上的电子邮件系统,使用户能够以非常低廉的价格和非常快速的方式,与世界上任何一个角落的网络用户联系。这些电子邮件可以是文字、图像、声音等各种方式,同时用户还可以得到大量免费的新闻、专题邮件,并实现轻松的信息搜索。二、电子邮件的起源与发展电子邮件的历史可以追溯到20世纪6
- Vue:class与style绑定
真der~啊
Vue2vue.js
Vue:class与style绑定2.6.1class绑定1、绑定字符串适用于样式的名字不确定,需要动态指定。Class绑定之字符串形式.static{border:1pxsolidblack;background-color:aquamarine;}.big{width:200px;height:200px;}.small{width:100px;height:100px;}.red-borde
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s