windows+label使用 2(xml文件 转换为txt文件)

1 在本博客上篇windows+label使用1后可以生成label的xml文件后:

2 在darket.exe所在的当前目录下,新建VOCdevkit文件夹

windows+label使用 2(xml文件 转换为txt文件)_第1张图片

然后在VOCdevkit文件夹下新建文件夹VOC2018

windows+label使用 2(xml文件 转换为txt文件)_第2张图片

然后在VOC2018文件夹下新建以下四个文件夹

windows+label使用 2(xml文件 转换为txt文件)_第3张图片

将本博客第一步所生成的xml文件全部复制到Annotations里,所用到的图片都放在JPEGimages里

然后在imageSets里面新建三个文件夹

windows+label使用 2(xml文件 转换为txt文件)_第4张图片

在Main文件家里新建

windows+label使用 2(xml文件 转换为txt文件)_第5张图片

其中train.txt里写入每张图片的名字  比如00001.jpg这张图片就写为00001,如下图

windows+label使用 2(xml文件 转换为txt文件)_第6张图片

3 将下面代码粘贴在一个.py文件里,运行即可得到每一个所对应的txt文件

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 30 10:43:13 2018

@author: Administrator
"""

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
 
#sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
 
#classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
 
sets=[('2018', 'train')]
classes = [ "peri","wolf"]
 
 
def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)
 
def convert_annotation(year, image_id):
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))  #(如果使用的不是VOC而是自设置数据集名字,则这里需要修改)
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')  #(同上)
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
 
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
wd = getcwd()
 
for year, image_set in sets:
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
        convert_annotation(year, image_id)
    list_file.close()

这里包含了类别和对应归一化后的位置(i guess,如有错请指正)。同时在darknet.exe所在当前目录下应该也生成了2018_train.txt这个文件,里面包含了所有训练样本的绝对路径。

windows+label使用 2(xml文件 转换为txt文件)_第7张图片

参考博客:https://yq.aliyun.com/wenji/273314

参考博客:https://www.cnblogs.com/antflow/p/7350274.html(yolo1(应该也可以)可能需要修改源代码.C文件(没尝试),yolo2只需要修改配置文件)

你可能感兴趣的:(windows+label使用 2(xml文件 转换为txt文件))