pyspark-快速开始

参考地址:

1、http://spark.apache.org/docs/latest/quick-start.html

2、https://github.com/apache/spark/tree/v2.2.0


快速开始

  • Interactive Analysis with the Spark Shell
    • Basics
    • More on Dataset Operations
    • Caching
  • Self-Contained Applications
  • Where to Go from Here

与Spark Shell的交互式分析


基本

./bin/pyspark  # 启动交互模式

>>> textFile = spark.read.text("README.md") # 读取文件 返回DataFrame

>>> textFile.count()  # Number of rows in this DataFrame 行数

>>> textFile.first()  # First row in this DataFrame 第一行

>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark")) # 按条件过滤

>>> textFile.filter(textFile.value.contains("Spark")).count()  # How many lines contain "Spark"?


更多关于数据集操作

>>> from pyspark.sql.functions import *
>>> textFile.select(size(split(textFile.value, "\s+")).name("numWords")).agg(max(col("numWords"))).collect()
# [Row(max(numWords)=15)]

>>> wordCounts = textFile.select(explode(split(textFile.value, "\s+")).as("word")).groupBy("word").count()

>>> wordCounts.collect()
[Row(word=u'online', count=1), Row(word=u'graphs', count=1), ...]

高速缓存

>>> linesWithSpark.cache()

>>> linesWithSpark.count()
15

>>> linesWithSpark.count()
15


自包含应用程序

"""SimpleApp.py"""
from pyspark.sql import SparkSession

logFile = "README.md"  # Should be some file on your system

spark = SparkSession.builder \
     .master("local") \
     .appName("Word Count") \
     .config("spark.some.config.option", "some-value") \
     .getOrCreate()
# spark = SparkSession.builder.appName("First App").master(master).getOrCreate()
logData = spark.read.text(logFile).cache()
numAs = logData.filter(logData.value.contains( 'a')).count()
numBs = logData.filter(logData.value.contains( 'b')).count()
print( "Lines with a: %i, lines with b: %i" % (numAs , numBs))
spark.stop()


-------------------------------------------------------
# Use spark-submit to run your application
$ YOUR_SPARK_HOME/ bin/spark-submit \
--master local[ 4] \
SimpleApp.py

...Lines with a: 46 , Lines with b: 23

spark自带的例子

更多例子参考路径:spark/examples/src/main/python/

pi.py

from __future__ import print_function

import sys
from random import random
from operator import add

from pyspark.sql import SparkSession


if __name__ == "__main__":
    """
        Usage: pi [partitions]
    """
    spark = SparkSession\
        .builder\
        .appName("PythonPi")\
        .getOrCreate()

    partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
    n = 100000 * partitions

    def f(_):
        x = random() * 2 - 1
        y = random() * 2 - 1
        return 1 if x ** 2 + y ** 2 < 1 else 0

    count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
    print("Pi is roughly %f" % (4.0 * count / n))

    spark.stop()

als.py

"""
This is an example implementation of ALS for learning how to use Spark. Please refer to
pyspark.ml.recommendation.ALS for more conventional use.

This example requires numpy (http://www.numpy.org/)
"""
from __future__ import print_function

import sys

import numpy as np
from numpy.random import rand
from numpy import matrix
from pyspark.sql import SparkSession

LAMBDA = 0.01   # regularization
np.random.seed(42)


def rmse(R, ms, us):
    diff = R - ms * us.T
    return np.sqrt(np.sum(np.power(diff, 2)) / (M * U))


def update(i, mat, ratings):
    uu = mat.shape[0]
    ff = mat.shape[1]

    XtX = mat.T * mat
    Xty = mat.T * ratings[i, :].T

    for j in range(ff):
        XtX[j, j] += LAMBDA * uu

    return np.linalg.solve(XtX, Xty)


if __name__ == "__main__":

    """
    Usage: als [M] [U] [F] [iterations] [partitions]"
    """

    print("""WARN: This is a naive implementation of ALS and is given as an
      example. Please use pyspark.ml.recommendation.ALS for more
      conventional use.""", file=sys.stderr)

    spark = SparkSession\
        .builder\
        .appName("PythonALS")\
        .getOrCreate()

    sc = spark.sparkContext

    M = int(sys.argv[1]) if len(sys.argv) > 1 else 100
    U = int(sys.argv[2]) if len(sys.argv) > 2 else 500
    F = int(sys.argv[3]) if len(sys.argv) > 3 else 10
    ITERATIONS = int(sys.argv[4]) if len(sys.argv) > 4 else 5
    partitions = int(sys.argv[5]) if len(sys.argv) > 5 else 2

    print("Running ALS with M=%d, U=%d, F=%d, iters=%d, partitions=%d\n" %
          (M, U, F, ITERATIONS, partitions))

    R = matrix(rand(M, F)) * matrix(rand(U, F).T)
    ms = matrix(rand(M, F))
    us = matrix(rand(U, F))

    Rb = sc.broadcast(R)
    msb = sc.broadcast(ms)
    usb = sc.broadcast(us)

    for i in range(ITERATIONS):
        ms = sc.parallelize(range(M), partitions) \
               .map(lambda x: update(x, usb.value, Rb.value)) \
               .collect()
        # collect() returns a list, so array ends up being
        # a 3-d array, we take the first 2 dims for the matrix
        ms = matrix(np.array(ms)[:, :, 0])
        msb = sc.broadcast(ms)

        us = sc.parallelize(range(U), partitions) \
               .map(lambda x: update(x, msb.value, Rb.value.T)) \
               .collect()
        us = matrix(np.array(us)[:, :, 0])
        usb = sc.broadcast(us)

        error = rmse(R, ms, us)
        print("Iteration %d:" % i)
        print("\nRMSE: %5.4f\n" % error)

    spark.stop()

kmeans.py

"""
The K-means algorithm written from scratch against PySpark. In practice,
one may prefer to use the KMeans algorithm in ML, as shown in
examples/src/main/python/ml/kmeans_example.py.

This example requires NumPy (http://www.numpy.org/).
"""
from __future__ import print_function

import sys

import numpy as np
from pyspark.sql import SparkSession


def parseVector(line):
    return np.array([float(x) for x in line.split(' ')])


def closestPoint(p, centers):
    bestIndex = 0
    closest = float("+inf")
    for i in range(len(centers)):
        tempDist = np.sum((p - centers[i]) ** 2)
        if tempDist < closest:
            closest = tempDist
            bestIndex = i
    return bestIndex


if __name__ == "__main__":

    if len(sys.argv) != 4:
        print("Usage: kmeans   ", file=sys.stderr)
        exit(-1)

    print("""WARN: This is a naive implementation of KMeans Clustering and is given
       as an example! Please refer to examples/src/main/python/ml/kmeans_example.py for an
       example on how to use ML's KMeans implementation.""", file=sys.stderr)

    spark = SparkSession\
        .builder\
        .appName("PythonKMeans")\
        .getOrCreate()

    lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
    data = lines.map(parseVector).cache()
    K = int(sys.argv[2])
    convergeDist = float(sys.argv[3])

    kPoints = data.takeSample(False, K, 1)
    tempDist = 1.0

    while tempDist > convergeDist:
        closest = data.map(
            lambda p: (closestPoint(p, kPoints), (p, 1)))
        pointStats = closest.reduceByKey(
            lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
        newPoints = pointStats.map(
            lambda st: (st[0], st[1][0] / st[1][1])).collect()

        tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints)

        for (iK, p) in newPoints:
            kPoints[iK] = p

    print("Final centers: " + str(kPoints))

    spark.stop()

pagerank.py

"""
This is an example implementation of PageRank. For more conventional use,
Please refer to PageRank implementation provided by graphx

Example Usage:
bin/spark-submit examples/src/main/python/pagerank.py data/mllib/pagerank_data.txt 10
"""
from __future__ import print_function

import re
import sys
from operator import add

from pyspark.sql import SparkSession


def computeContribs(urls, rank):
    """Calculates URL contributions to the rank of other URLs."""
    num_urls = len(urls)
    for url in urls:
        yield (url, rank / num_urls)


def parseNeighbors(urls):
    """Parses a urls pair string into urls pair."""
    parts = re.split(r'\s+', urls)
    return parts[0], parts[1]


if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: pagerank  ", file=sys.stderr)
        exit(-1)

    print("WARN: This is a naive implementation of PageRank and is given as an example!\n" +
          "Please refer to PageRank implementation provided by graphx",
          file=sys.stderr)

    # Initialize the spark context.
    spark = SparkSession\
        .builder\
        .appName("PythonPageRank")\
        .getOrCreate()

    # Loads in input file. It should be in format of:
    #     URL         neighbor URL
    #     URL         neighbor URL
    #     URL         neighbor URL
    #     ...
    lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])

    # Loads all URLs from input file and initialize their neighbors.
    links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()

    # Loads all URLs with other URL(s) link to from input file and initialize ranks of them to one.
    ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))

    # Calculates and updates URL ranks continuously using PageRank algorithm.
    for iteration in range(int(sys.argv[2])):
        # Calculates URL contributions to the rank of other URLs.
        contribs = links.join(ranks).flatMap(
            lambda url_urls_rank: computeContribs(url_urls_rank[1][0], url_urls_rank[1][1]))

        # Re-calculates URL ranks based on neighbor contributions.
        ranks = contribs.reduceByKey(add).mapValues(lambda rank: rank * 0.85 + 0.15)

    # Collects all URL ranks and dump them to console.
    for (link, rank) in ranks.collect():
        print("%s has rank: %s." % (link, rank))

    spark.stop()

logistic_regression.py

"""
A logistic regression implementation that uses NumPy (http://www.numpy.org)
to act on batches of input data using efficient matrix operations.

In practice, one may prefer to use the LogisticRegression algorithm in
ML, as shown in examples/src/main/python/ml/logistic_regression_with_elastic_net.py.
"""
from __future__ import print_function

import sys

import numpy as np
from pyspark.sql import SparkSession


D = 10  # Number of dimensions


# Read a batch of points from the input file into a NumPy matrix object. We operate on batches to
# make further computations faster.
# The data file contains lines of the form # into a NumPy array of size numLines * (D + 1) and pull out column 0 vs the others in gradient().
def readPointBatch(iterator):
    strs = list(iterator)
    matrix = np.zeros((len(strs), D + 1))
    for i, s in enumerate(strs):
        matrix[i] = np.fromstring(s.replace(',', ' '), dtype=np.float32, sep=' ')
    return [matrix]

if __name__ == "__main__":

    if len(sys.argv) != 3:
        print("Usage: logistic_regression  ", file=sys.stderr)
        exit(-1)

    print("""WARN: This is a naive implementation of Logistic Regression and is
      given as an example!
      Please refer to examples/src/main/python/ml/logistic_regression_with_elastic_net.py
      to see how ML's implementation is used.""", file=sys.stderr)

    spark = SparkSession\
        .builder\
        .appName("PythonLR")\
        .getOrCreate()

    points = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])\
        .mapPartitions(readPointBatch).cache()
    iterations = int(sys.argv[2])

    # Initialize w to a random value
    w = 2 * np.random.ranf(size=D) - 1
    print("Initial w: " + str(w))

    # Compute logistic regression gradient for a matrix of data points
    def gradient(matrix, w):
        Y = matrix[:, 0]    # point labels (first column of input file)
        X = matrix[:, 1:]   # point coordinates
        # For each point (x, y), compute gradient function, then sum these up
        return ((1.0 / (1.0 + np.exp(-Y * X.dot(w))) - 1.0) * Y * X.T).sum(1)

    def add(x, y):
        x += y
        return x

    for i in range(iterations):
        print("On iteration %i" % (i + 1))
        w -= points.map(lambda m: gradient(m, w)).reduce(add)

    print("Final w: " + str(w))

    spark.stop()

sort.py

from __future__ import print_function

import sys

from pyspark.sql import SparkSession


if __name__ == "__main__":
    if len(sys.argv) != 2:
        print("Usage: sort ", file=sys.stderr)
        exit(-1)

    spark = SparkSession\
        .builder\
        .appName("PythonSort")\
        .getOrCreate()

    lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
    sortedCount = lines.flatMap(lambda x: x.split(' ')) \
        .map(lambda x: (int(x), 1)) \
        .sortByKey()
    # This is just a demo on how to bring all the sorted data back to a single node.
    # In reality, we wouldn't want to collect all the data to the driver node.
    output = sortedCount.collect()
    for (num, unitcount) in output:
        print(num)

    spark.stop()

transitive_closure.py

from __future__ import print_function

import sys
from random import Random

from pyspark.sql import SparkSession

numEdges = 200
numVertices = 100
rand = Random(42)


def generateGraph():
    edges = set()
    while len(edges) < numEdges:
        src = rand.randrange(0, numVertices)
        dst = rand.randrange(0, numVertices)
        if src != dst:
            edges.add((src, dst))
    return edges


if __name__ == "__main__":
    """
    Usage: transitive_closure [partitions]
    """
    spark = SparkSession\
        .builder\
        .appName("PythonTransitiveClosure")\
        .getOrCreate()

    partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
    tc = spark.sparkContext.parallelize(generateGraph(), partitions).cache()

    # Linear transitive closure: each round grows paths by one edge,
    # by joining the graph's edges with the already-discovered paths.
    # e.g. join the path (y, z) from the TC with the edge (x, y) from
    # the graph to obtain the path (x, z).

    # Because join() joins on keys, the edges are stored in reversed order.
    edges = tc.map(lambda x_y: (x_y[1], x_y[0]))

    oldCount = 0
    nextCount = tc.count()
    while True:
        oldCount = nextCount
        # Perform the join, obtaining an RDD of (y, (z, x)) pairs,
        # then project the result to obtain the new (x, z) paths.
        new_edges = tc.join(edges).map(lambda __a_b: (__a_b[1][1], __a_b[1][0]))
        tc = tc.union(new_edges).distinct().cache()
        nextCount = tc.count()
        if nextCount == oldCount:
            break

    print("TC has %i edges" % tc.count())

    spark.stop()

wordcount.py

from __future__ import print_function

import sys
from operator import add

from pyspark.sql import SparkSession


if __name__ == "__main__":
    if len(sys.argv) != 2:
        print("Usage: wordcount ", file=sys.stderr)
        exit(-1)

    spark = SparkSession\
        .builder\
        .appName("PythonWordCount")\
        .getOrCreate()

    lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
    counts = lines.flatMap(lambda x: x.split(' ')) \
                  .map(lambda x: (x, 1)) \
                  .reduceByKey(add)
    output = counts.collect()
    for (word, count) in output:
        print("%s: %i" % (word, count))

    spark.stop()

avro_inputformat.py

from __future__ import print_function

import sys

from functools import reduce
from pyspark.sql import SparkSession

"""
Read data file users.avro in local Spark distro:

$ cd $SPARK_HOME
$ ./bin/spark-submit --driver-class-path /path/to/example/jar \
> ./examples/src/main/python/avro_inputformat.py \
> examples/src/main/resources/users.avro
{u'favorite_color': None, u'name': u'Alyssa', u'favorite_numbers': [3, 9, 15, 20]}
{u'favorite_color': u'red', u'name': u'Ben', u'favorite_numbers': []}

To read name and favorite_color fields only, specify the following reader schema:

$ cat examples/src/main/resources/user.avsc
{"namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_color", "type": ["string", "null"]}
 ]
}

$ ./bin/spark-submit --driver-class-path /path/to/example/jar \
> ./examples/src/main/python/avro_inputformat.py \
> examples/src/main/resources/users.avro examples/src/main/resources/user.avsc
{u'favorite_color': None, u'name': u'Alyssa'}
{u'favorite_color': u'red', u'name': u'Ben'}
"""
if __name__ == "__main__":
    if len(sys.argv) != 2 and len(sys.argv) != 3:
        print("""
        Usage: avro_inputformat  [reader_schema_file]

        Run with example jar:
        ./bin/spark-submit --driver-class-path /path/to/example/jar \
        /path/to/examples/avro_inputformat.py  [reader_schema_file]
        Assumes you have Avro data stored in . Reader schema can be optionally specified
        in [reader_schema_file].
        """, file=sys.stderr)
        exit(-1)

    path = sys.argv[1]

    spark = SparkSession\
        .builder\
        .appName("AvroKeyInputFormat")\
        .getOrCreate()

    sc = spark.sparkContext

    conf = None
    if len(sys.argv) == 3:
        schema_rdd = sc.textFile(sys.argv[2], 1).collect()
        conf = {"avro.schema.input.key": reduce(lambda x, y: x + y, schema_rdd)}

    avro_rdd = sc.newAPIHadoopFile(
        path,
        "org.apache.avro.mapreduce.AvroKeyInputFormat",
        "org.apache.avro.mapred.AvroKey",
        "org.apache.hadoop.io.NullWritable",
        keyConverter="org.apache.spark.examples.pythonconverters.AvroWrapperToJavaConverter",
        conf=conf)
    output = avro_rdd.map(lambda x: x[0]).collect()
    for k in output:
        print(k)

    spark.stop()

parquet_inputformat.py

import sys

from pyspark.sql import SparkSession

"""
Read data file users.parquet in local Spark distro:

$ cd $SPARK_HOME
$ export AVRO_PARQUET_JARS=/path/to/parquet-avro-1.5.0.jar
$ ./bin/spark-submit --driver-class-path /path/to/example/jar \\
        --jars $AVRO_PARQUET_JARS \\
        ./examples/src/main/python/parquet_inputformat.py \\
        examples/src/main/resources/users.parquet
<...lots of log output...>
{u'favorite_color': None, u'name': u'Alyssa', u'favorite_numbers': [3, 9, 15, 20]}
{u'favorite_color': u'red', u'name': u'Ben', u'favorite_numbers': []}
<...more log output...>
"""
if __name__ == "__main__":
    if len(sys.argv) != 2:
        print("""
        Usage: parquet_inputformat.py 

        Run with example jar:
        ./bin/spark-submit --driver-class-path /path/to/example/jar \\
                /path/to/examples/parquet_inputformat.py 
        Assumes you have Parquet data stored in .
        """, file=sys.stderr)
        exit(-1)

    path = sys.argv[1]

    spark = SparkSession\
        .builder\
        .appName("ParquetInputFormat")\
        .getOrCreate()

    sc = spark.sparkContext

    parquet_rdd = sc.newAPIHadoopFile(
        path,
        'org.apache.parquet.avro.AvroParquetInputFormat',
        'java.lang.Void',
        'org.apache.avro.generic.IndexedRecord',
        valueConverter='org.apache.spark.examples.pythonconverters.IndexedRecordToJavaConverter')
    output = parquet_rdd.map(lambda x: x[1]).collect()
    for k in output:
        print(k)

    spark.stop()


status_api_demo.py

from __future__ import print_function

import time
import threading
import Queue

from pyspark import SparkConf, SparkContext


def delayed(seconds):
    def f(x):
        time.sleep(seconds)
        return x
    return f


def call_in_background(f, *args):
    result = Queue.Queue(1)
    t = threading.Thread(target=lambda: result.put(f(*args)))
    t.daemon = True
    t.start()
    return result


def main():
    conf = SparkConf().set("spark.ui.showConsoleProgress", "false")
    sc = SparkContext(appName="PythonStatusAPIDemo", conf=conf)

    def run():
        rdd = sc.parallelize(range(10), 10).map(delayed(2))
        reduced = rdd.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x + y)
        return reduced.map(delayed(2)).collect()

    result = call_in_background(run)
    status = sc.statusTracker()
    while result.empty():
        ids = status.getJobIdsForGroup()
        for id in ids:
            job = status.getJobInfo(id)
            print("Job", id, "status: ", job.status)
            for sid in job.stageIds:
                info = status.getStageInfo(sid)
                if info:
                    print("Stage %d: %d tasks total (%d active, %d complete)" %
                          (sid, info.numTasks, info.numActiveTasks, info.numCompletedTasks))
        time.sleep(1)

    print("Job results are:", result.get())
    sc.stop()

if __name__ == "__main__":
    main()







你可能感兴趣的:(spark)