【电信学】【2018.10】基于随机几何的5G网络建模、分析与设计

【电信学】【2018.10】基于随机几何的5G网络建模、分析与设计_第1张图片

本文为沙特阿卜杜拉国王科技大学(作者:Konpal Shaukat Ali)的博士论文,共214页。

提高频谱利用率是满足5G发展对数据速率和系统容量不断增长需求的一个核心问题,本文主要研究了在5G网络中发挥重要作用的三种频谱复用技术:设备到设备(D2D)、全双工(FD)、非正交多址接入(NOMA)。D2D允许近端用户设备(UE)绕过蜂窝基站,直接与其预定的接收机通信。在下层D2D中,D2D UE使用与蜂窝UE相同的频谱资源。FD通信允许发射-接收用户对在同一频率信道上同时工作。由于遇到了压倒性的自干扰,直到最近由于收发器设计的进步,才有可能实现FD。NOMA允许多个接收机(发射机)通过在功率域中多路复用,在一个时频资源块中与同一个发射机(接收机)通信。NOMA解码采用逐次干扰抵消。

这些技术中都显著提高了频谱效率,从而提高了数据速率和吞吐量;然而,付出的代价是增加了干扰。由于这些技术都允许在一个时频资源块上的一个小区内进行多用户传输,因此它们会导致小区内的干扰。另外,由于通信容量的增加,它们也增加了来自小区外部的网络干扰(即小区间干扰)。真实的网络将变得非常密集,因此,来自整个网络的小区间干扰影响是显著的。使用考虑单个小区/少数小区方案的模型会导致误导性结论。因此,精确建模需要考虑大型网络。在这种情况下,随机几何是一个强大的工具来分析随机模式的节点。本文采用随机几何的方法对5G网络中的各种技术进行建模和分析,这让我们深入了解了网络性能,向我们展示了在真正的5G网络中部署特定技术的影响。此外,它还允许我们提出集成这些技术、模式选择、参数选择和资源分配的方案,以增强网络中感兴趣的参数,例如数据速率、覆盖率和安全通信。

Improving spectral-utilization is a corefocus to cater the ever-increasing demand in data rate and system capacityrequired for the development of 5G. This dissertation focuses on threespectrum-reuse technologies that are envisioned to play an important role in 5Gnetworks: device-to-device (D2D), full-duplex (FD), and nonorthogonal multipleaccess (NOMA). D2D allows proximal user-equipments (UEs) to bypass the cellularbase-station and communicate with their intended receiver directly. In underlayD2D, the D2D UEs utilize the same spectral resources as the cellular UEs. FDcommunication allows a transmit-receive pair to transmit simultaneously on thesame frequency channel. Due to the overwhelming self-interference encountered,FD was not possible until very recently courtesy of advances in transceiverdesign. NOMA allows multiple receivers (transmitters) to communicate with onetransmitter (receiver) in one time-frequency resource-block by multiplexing inthe power domain. Successive-interference cancellation is used for NOMAdecoding. Each of these techniques significantly improves spectral efficiencyand consequently data rate and throughput; however, the price paid is increasedinterference. Since each of these technologies allow multiple transmissionswithin a cell on a time-frequency resource-block, they result in interferencewithin the cell (i.e., intracell interference). Additionally, due to theincreased communication, they increase network interference from outside thecell under consideration as well (i.e., increased intercell interference). Realnetworks are becoming very dense; as a result, the impact of intercellinterference coming from the entire network is significant. As such, usingmodels that consider a single-cell/few-cell scenarios result in misleadingconclusions. Hence, accurate modeling requires considering a large network. Inthis context, stochastic geometry is a powerful tool for analyzing randompatterns of points such as those found in wireless networks. In thisdissertation, stochastic geometry is used to model and analyze the differenttechnologies that are to be deployed in 5G networks. This gives us insight intothe network performance, showing us the impacts of deploying a certaintechnology into real 5G networks. Additionally, it allows us to propose schemesfor integrating such technologies, mode-selection, parameter-selection, andresource-allocation that enhance the parameters of interest in the network suchas data rate, coverage, and secure communication.

  1. 引言
  2. 用于无线网络的随机几何
  3. 全双工D2D通信蜂窝网络建模的随机几何方法
  4. 空间干扰相关性和人为干扰对蜂窝网络保密性的影响
  5. 大规模5G网络的非正交多址接入:抗干扰设计
  6. Poisson网络中的下行链路非正交多址(NOMA)
  7. Poisson网络下行链路非正交多址(NOMA)的元分布
  8. 结论

更多精彩文章请关注公众号:【电信学】【2018.10】基于随机几何的5G网络建模、分析与设计_第2张图片

你可能感兴趣的:(【电信学】【2018.10】基于随机几何的5G网络建模、分析与设计)