spark读取hbase数据做分布式计算

由于spark提供的hbaseTest是scala版本,并没有提供java版。我将scala版本改为java版本,并根据数据做了些计算操作。

程序目的:查询出hbase满足条件的用户,统计各个等级个数。

代码如下,注释已经写详细:

package com.sdyc.ndspark.sys;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.util.Base64;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.Serializable;
import java.util.List;

/**
 * 
 *
 * spark hbase 测试
 *
 *  Created with IntelliJ IDEA.
 * User: zhangdonghao
 * Date: 14-1-26
 * Time: 上午9:24
 * To change this template use File | Settings | File Templates.
 * 
* * @author zhangdonghao */ public class HbaseTest implements Serializable { public Log log = LogFactory.getLog(HbaseTest.class); /** * 将scan编码,该方法copy自 org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil * * @param scan * @return * @throws IOException */ static String convertScanToString(Scan scan) throws IOException { ByteArrayOutputStream out = new ByteArrayOutputStream(); DataOutputStream dos = new DataOutputStream(out); scan.write(dos); return Base64.encodeBytes(out.toByteArray()); } public void start() { //初始化sparkContext,这里必须在jars参数里面放上Hbase的jar, // 否则会报unread block data异常 JavaSparkContext sc = new JavaSparkContext("spark://nowledgedata-n3:7077", "hbaseTest", "/home/hadoop/software/spark-0.8.1", new String[]{"target/ndspark.jar", "target\\dependency\\hbase-0.94.6.jar"}); //使用HBaseConfiguration.create()生成Configuration // 必须在项目classpath下放上hadoop以及hbase的配置文件。 Configuration conf = HBaseConfiguration.create(); //设置查询条件,这里值返回用户的等级 Scan scan = new Scan(); scan.setStartRow(Bytes.toBytes("195861-1035177490")); scan.setStopRow(Bytes.toBytes("195861-1072173147")); scan.addFamily(Bytes.toBytes("info")); scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("levelCode")); try { //需要读取的hbase表名 String tableName = "usertable"; conf.set(TableInputFormat.INPUT_TABLE, tableName); conf.set(TableInputFormat.SCAN, convertScanToString(scan)); //获得hbase查询结果Result JavaPairRDD hBaseRDD = sc.newAPIHadoopRDD(conf, TableInputFormat.class, ImmutableBytesWritable.class, Result.class); //从result中取出用户的等级,并且每一个算一次 JavaPairRDD levels = hBaseRDD.map( new PairFunction, Integer, Integer>() { @Override public Tuple2 call( Tuple2 immutableBytesWritableResultTuple2) throws Exception { byte[] o = immutableBytesWritableResultTuple2._2().getValue( Bytes.toBytes("info"), Bytes.toBytes("levelCode")); if (o != null) { return new Tuple2(Bytes.toInt(o), 1); } return null; } }); //数据累加 JavaPairRDD counts = levels.reduceByKey(new Function2() { public Integer call(Integer i1, Integer i2) { return i1 + i2; } }); //打印出最终结果 List> output = counts.collect(); for (Tuple2 tuple : output) { System.out.println(tuple._1 + ": " + tuple._2); } } catch (Exception e) { log.warn(e); } } /** * spark如果计算没写在main里面,实现的类必须继承Serializable接口,
* 否则会报 Task not serializable: java.io.NotSerializableException 异常 */ public static void main(String[] args) throws InterruptedException { new HbaseTest().start(); System.exit(0); } }

运行结果如下:

0: 28528
11: 708
4: 28656
2: 36315
6: 23848
8: 19802
10: 6913
9: 15988
3: 31950
1: 38872
7: 21600
5: 27190
12: 17

你可能感兴趣的:(spark)