随机梯度下降法

一、误差准则函数与随机梯度下降:

数学一点将就是,对于给定的一个点集(X,Y),找到一条曲线或者曲面,对其进行拟合之。同时称X中的变量为特征(Feature),Y值为预测值。

如图:


一个典型的机器学习的过程,首先给出一组输入数据X,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计Y,也被称为构建一个模型。

我们用X1、X2...Xn 去描述feature里面的分量,用Y来描述我们的估计,得到一下模型:


我们需要一种机制去评价这个模型对数据的描述到底够不够准确,而采集的数据x、y通常来说是存在误差的(多数情况下误差服从高斯分布),于是,自然的,引入误差函数:


关键的一点是如何调整theta值,使误差函数J最小化。J函数构成一个曲面或者曲线,我们的目的是找到该曲面的最低点:


假设随机站在该曲面的一点,要以最快的速度到达最低点,我们当然会沿着坡度最大的方向往下走(梯度的反方向)

用数学描述就是一个求偏导数的过程:


这样,参数theta的更新过程描述为以下:

   (α表示算法的学习速率)

二、算法实现与测试:

通过一组数据拟合 y = theta1*x1 +theta2*x2

#Python 3.3.5  
# matrix_A  训练集  
matrix_A = [[1,4], [2,5], [5,1], [4,2]]  
Matrix_y = [19,26,19,20]  
theta = [2,5]  
#学习速率  
leraing_rate = 0.005  
loss = 50  
iters = 1  
Eps = 0.0001  
while loss>Eps and iters <1000 :  
    loss = 0  
    for i in range(3) :  
        h = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1]   
        theta[0] = theta[0] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][0]  
        theta[1] = theta[1] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][1]  
    for i in range(3) :  
        Error = 0  
        Error = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1] - Matrix_y[i]  
        Error = Error*Error  
        loss = loss +Error  
    iters = iters +1  
print ('theta=',theta)  
print ('iters=',iters)  


求解结果:

>>>   
theta= [2.9980959216157945, 4.001522800837675]  
iters= 75  

但如果对输入数据添加一些噪声

matrix_A = [[1.05,4], [2.1,5], [5,1], [4,2]]

求解结果为:

>>>   
theta= [3.0095950685197725, 3.944718521027671]  
iters= 1000 


可见在有噪声的情况下,要及时调整模型误差精度、迭代次数上限,一期达到我们的需求。


转自:http://blog.csdn.net/zbc1090549839/article/details/38149561

你可能感兴趣的:(机器学习-相关算法,机器学习,梯度下降算法)