Prometheus Operator 初体验

前面的课程中我们学习了用自定义的方式来对 Kubernetes 集群进行监控,但是还是有一些缺陷,比如 Prometheus、AlertManager 这些组件服务本身的高可用,当然我们也完全可以用自定义的方式来实现这些需求,我们也知道 Prometheus 在代码上就已经对 Kubernetes 有了原生的支持,可以通过服务发现的形式来自动监控集群,因此我们可以使用另外一种更加高级的方式来部署 Prometheus:Operator 框架。

Operator

Operator是由CoreOS公司开发的,用来扩展 Kubernetes API,特定的应用程序控制器,它用来创建、配置和管理复杂的有状态应用,如数据库、缓存和监控系统。Operator基于 Kubernetes 的资源和控制器概念之上构建,但同时又包含了应用程序特定的一些专业知识,比如创建一个数据库的Operator,则必须对创建的数据库的各种运维方式非常了解,创建Operator的关键是CRD(自定义资源)的设计。

CRD是对 Kubernetes API 的扩展,Kubernetes 中的每个资源都是一个 API 对象的集合,例如我们在YAML文件里定义的那些spec都是对 Kubernetes 中的资源对象的定义,所有的自定义资源可以跟 Kubernetes 中内建的资源一样使用 kubectl 操作。

Operator是将运维人员对软件操作的知识给代码化,同时利用 Kubernetes 强大的抽象来管理大规模的软件应用。目前CoreOS官方提供了几种Operator的实现,其中就包括我们今天的主角:Prometheus OperatorOperator的核心实现就是基于 Kubernetes 的以下两个概念:

  • 资源:对象的状态定义
  • 控制器:观测、分析和行动,以调节资源的分布

当然我们如果有对应的需求也完全可以自己去实现一个Operator,接下来我们就来给大家详细介绍下Prometheus-Operator的使用方法。

介绍

首先我们先来了解下Prometheus-Operator的架构图:

Prometheus Operator 初体验_第1张图片

上图是Prometheus-Operator官方提供的架构图,其中Operator是最核心的部分,作为一个控制器,他会去创建PrometheusServiceMonitorAlertManager以及PrometheusRule4个CRD资源对象,然后会一直监控并维持这4个资源对象的状态。

其中创建的prometheus这种资源对象就是作为Prometheus Server存在,而ServiceMonitor就是exporter的各种抽象,exporter前面我们已经学习了,是用来提供专门提供metrics数据接口的工具,Prometheus就是通过ServiceMonitor提供的metrics数据接口去 pull 数据的,当然alertmanager这种资源对象就是对应的AlertManager的抽象,而PrometheusRule是用来被Prometheus实例使用的报警规则文件。

这样我们要在集群中监控什么数据,就变成了直接去操作 Kubernetes 集群的资源对象了,是不是方便很多了。上图中的 Service 和 ServiceMonitor 都是 Kubernetes 的资源,一个 ServiceMonitor 可以通过 labelSelector 的方式去匹配一类 Service,Prometheus 也可以通过 labelSelector 去匹配多个ServiceMonitor。

安装

我们这里直接通过 Prometheus-Operator 的源码来进行安装,当然也可以用 Helm 来进行一键安装,我们采用源码安装可以去了解更多的实现细节。首页将源码 Clone 下来:

$ git clone https://github.com/coreos/prometheus-operator
$ cd contrib/kube-prometheus/manifests/
$ ls
00namespace-namespace.yaml                                         node-exporter-clusterRole.yaml
0prometheus-operator-0alertmanagerCustomResourceDefinition.yaml    node-exporter-daemonset.yaml
......

进入到 manifests 目录下面,这个目录下面包含我们所有的资源清单文件,我们需要对其中的文件 prometheus-serviceMonitorKubelet.yaml 进行简单的修改,因为默认情况下,这个 ServiceMonitor 是关联的 kubelet 的10250端口去采集的节点数据,而我们前面说过为了安全,这个 metrics 数据已经迁移到10255这个只读端口上面去了,我们只需要将文件中的https-metrics更改成http-metrics即可,这个在 Prometheus-Operator 对节点端点同步的代码中有相关定义,感兴趣的可以点此查看完整代码:

Subsets: []v1.EndpointSubset{
    {
        Ports: []v1.EndpointPort{
            {
                Name: "https-metrics",
                Port: 10250,
            },
            {
                Name: "http-metrics",
                Port: 10255,
            },
            {
                Name: "cadvisor",
                Port: 4194,
            },
        },
    },
},

修改完成后,直接在该文件夹下面执行创建资源命令即可:

$ kubectl apply -f .

部署完成后,会创建一个名为monitoring的 namespace,所以资源对象对将部署在改命名空间下面,此外 Operator 会自动创建4个 CRD 资源对象:

$ kubectl get crd |grep coreos
alertmanagers.monitoring.coreos.com     5d
prometheuses.monitoring.coreos.com      5d
prometheusrules.monitoring.coreos.com   5d
servicemonitors.monitoring.coreos.com   5d

可以在 monitoring 命名空间下面查看所有的 Pod,其中 alertmanager 和 prometheus 是用 StatefulSet 控制器管理的,其中还有一个比较核心的 prometheus-operator 的 Pod,用来控制其他资源对象和监听对象变化的:

$ kubectl get pods -n monitoring
NAME                                  READY     STATUS    RESTARTS   AGE
alertmanager-main-0                   2/2       Running   0          21h
alertmanager-main-1                   2/2       Running   0          21h
alertmanager-main-2                   2/2       Running   0          21h
grafana-df9bfd765-f4dvw               1/1       Running   0          22h
kube-state-metrics-77c9658489-ntj66   4/4       Running   0          20h
node-exporter-4sr7f                   2/2       Running   0          21h
node-exporter-9mh2r                   2/2       Running   0          21h
node-exporter-m2gkp                   2/2       Running   0          21h
prometheus-adapter-dc548cc6-r6lhb     1/1       Running   0          22h
prometheus-k8s-0                      3/3       Running   1          21h
prometheus-k8s-1                      3/3       Running   1          21h
prometheus-operator-bdf79ff67-9dc48   1/1       Running   0          21h

查看创建的 Service:

$ kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
alertmanager-main       ClusterIP   10.110.204.224           9093/TCP            23h
alertmanager-operated   ClusterIP   None                     9093/TCP,6783/TCP   23h
grafana                 ClusterIP   10.98.191.31             3000/TCP            23h
kube-state-metrics      ClusterIP   None                     8443/TCP,9443/TCP   23h
node-exporter           ClusterIP   None                     9100/TCP            23h
prometheus-adapter      ClusterIP   10.107.201.172           443/TCP             23h
prometheus-k8s          ClusterIP   10.107.105.53            9090/TCP            23h
prometheus-operated     ClusterIP   None                     9090/TCP            23h
prometheus-operator     ClusterIP   None                     8080/TCP            23h

可以看到上面针对 grafana 和 prometheus 都创建了一个类型为 ClusterIP 的 Service,当然如果我们想要在外网访问这两个服务的话可以通过创建对应的 Ingress 对象或者使用 NodePort 类型的 Service,我们这里为了简单,直接使用 NodePort 类型的服务即可,编辑 grafana 和 prometheus-k8s 这两个 Service,将服务类型更改为 NodePort:

$ kubectl edit svc grafana -n monitoring
$ kubectl edit svc prometheus-k8s -n monitoring
$ kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
grafana                 NodePort    10.98.191.31             3000:32333/TCP      23h
prometheus-k8s          NodePort    10.107.105.53            9090:30166/TCP      23h
......

更改完成后,我们就可以通过NodeIP:NodePort去访问上面的两个服务了,比如查看 prometheus 的 targets 页面:

Prometheus Operator 初体验_第2张图片

配置

我们可以看到大部分的配置都是正常的,只有两三个没有管理到对应的监控目标,比如 kube-controller-manager 和 kube-scheduler 这两个系统组件,这就和 ServiceMonitor 的定义有关系了,我们先来查看下 kube-scheduler 组件对应的 ServiceMonitor 资源的定义:(prometheus-serviceMonitorKubeScheduler.yaml)

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    k8s-app: kube-scheduler
  name: kube-scheduler
  namespace: monitoring
spec:
  endpoints:
  - interval: 30s # 每30s获取一次信息
    port: http-metrics  # 对应service的端口名
  jobLabel: k8s-app
  namespaceSelector: # 表示去匹配某一命名空间中的service,如果想从所有的namespace中匹配用any: true
    matchNames:
    - kube-system
  selector:  # 匹配的 Service 的labels,如果使用mathLabels,则下面的所有标签都匹配时才会匹配该service,如果使用matchExpressions,则至少匹配一个标签的service都会被选择
    matchLabels:
      k8s-app: kube-scheduler

上面是一个典型的 ServiceMonitor 资源文件的声明方式,上面我们通过selector.matchLabels在 kube-system 这个命名空间下面匹配具有k8s-app=kube-scheduler这样的 Service,但是我们系统中根本就没有对应的 Service,所以我们需要手动创建一个 Service:(prometheus-kubeSchedulerService.yaml)

apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-scheduler
  labels:
    k8s-app: kube-scheduler
spec:
  selector:
    component: kube-scheduler
  ports:
  - name: http-metrics
    port: 10251
    targetPort: 10251
    protocol: TCP

10251是kube-scheduler组件 metrics 数据所在的端口,10252是kube-controller-manager组件的监控数据所在端口。

其中最重要的是上面 labels 和 selector 部分,labels 区域的配置必须和我们上面的 ServiceMonitor 对象中的 selector 保持一致,selector下面配置的是component=kube-scheduler,为什么会是这个 label 标签呢,我们可以去 describe 下 kube-scheduelr 这个 Pod:

$ kubectl describe pod kube-scheduler-master -n kube-system
Name:         kube-scheduler-master
Namespace:    kube-system
Node:         master/10.151.30.57
Start Time:   Sun, 05 Aug 2018 18:13:32 +0800
Labels:       component=kube-scheduler
              tier=control-plane
......

我们可以看到这个 Pod 具有component=kube-schedulertier=control-plane这两个标签,而前面这个标签具有更唯一的特性,所以使用前面这个标签较好,这样上面创建的 Service 就可以和我们的 Pod 进行关联了,直接创建即可:

$ kubectl create -f prometheus-kubeSchedulerService.yaml
$ kubectl get svc -n kube-system -l k8s-app=kube-scheduler
NAME             TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)     AGE
kube-scheduler   ClusterIP   10.102.119.231           10251/TCP   18m

创建完成后,隔一小会儿后去 prometheus 查看 targets 下面 kube-scheduler 的状态:

Prometheus Operator 初体验_第3张图片

我们可以看到现在已经发现了 target,但是抓取数据结果出错了,这个错误是因为我们集群是使用 kubeadm 搭建的,其中 kube-scheduler 默认是绑定在127.0.0.1上面的,而上面我们这个地方是想通过节点的 IP 去访问,所以访问被拒绝了,我们只要把 kube-scheduler 绑定的地址更改成0.0.0.0即可满足要求,由于 kube-scheduler 是以静态 Pod 的形式运行在集群中的,所以我们只需要更改静态 Pod 目录下面对应的 YAML 文件即可:

$ ls /etc/kubernetes/manifests/
etcd.yaml  kube-apiserver.yaml  kube-controller-manager.yaml  kube-scheduler.yaml

将 kube-scheduler.yaml 文件中-command--address地址更改成0.0.0.0

containers:
- command:
- kube-scheduler
- --leader-elect=true
- --kubeconfig=/etc/kubernetes/scheduler.conf
- --address=0.0.0.0

修改完成后我们将该文件从当前文件夹中移除,隔一会儿再移回该目录,就可以自动更新了,然后再去看 prometheus 中 kube-scheduler 这个 target 是否已经正常了:

Prometheus Operator 初体验_第4张图片

大家可以按照上面的方法尝试去修复下 kube-controller-manager 组件的监控。

上面的监控数据配置完成后,现在我们可以去查看下 grafana 下面的 dashboard,同样使用上面的 NodePort 访问即可,第一次登录使用 admin:admin 登录即可,进入首页后,可以发现已经和我们的 Prometheus 数据源关联上了,正常来说可以看到一些监控图表了:

Prometheus Operator 初体验_第5张图片

下节课我们再来和大家介绍怎样来完全自定义一个 ServiceMonitor 以及 AlertManager 相关的配置。

你可能感兴趣的:(kubernetes)