编写MapReduce中的wordcount的jar包和实现实体类在Hadoop中的序列化

wordcount是MapReduce中最经典的一个案例 就是简单的统计一个文件中单词的个数

下面我们使用Java代码 编写一个一样功能的jar包,然后可以把这个jar包上传到Hadoop中 功能和wordcount一样

先导入依赖:


        
        
            junit
            junit
            4.12
            test
        
        
        
            log4j
            log4j
            1.2.17
        
        
        
        	
            org.apache.hadoop
            hadoop-common
            2.6.1
        
        
        
            org.apache.hadoop
            hadoop-client
            2.6.1
        
        
        
            org.apache.hadoop
            hadoop-hdfs
            2.6.1
        
        
        
            jdk.tools
            jdk.tools
            1.8
            system

			
            ${JAVA_HOME}/lib/tools.jar
        
    

然后就可以编写代码了

mapper:

package com.jee.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

//WcMapper类  用于处理map阶段的任务
//map阶段的任务 就是  我们一开始拿到的数据的格式 可能不是我们想要的格式  我们将它转化成我们想要的格式 然后交给reduce任务处理

// Mapper类的参数 : LongWriter就是Java中的long类型 第一个LongWriter表示我们接受到的数据的偏移量(偏移量就是这个数据离所在文件的头部的距离)
// Text 就是 Java中的String类型  第一个Text 表示我们所要处理的数据
// 最后两个参数表示我们转化后想要的类型  key-value  Text表示字符串 IntWritable表示 int  就是Java中的 map类型
public class WcMapper extends Mapper {

    private Text word = new Text();
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //我们将接受到的数据进行处理后 转化成map类型  再交给reduce处理
        //由于我们是统计单词个数 所以我们将接受到的数据转化成字符串  然后split 就可以得到一个个的单词 使用map类型 就是<单词,数量>

        //将源数据转化成字符串
        String line = value.toString();

        //将字符串根据空格拆分成一个个的单词
        String[] words = line.split(" ");

        //遍历数组,将单词变成的格式交给框架 由框架再交给reduce任务处理
        for(String s : words){
            word.set(s);
            //写给框架
            context.write(word,new IntWritable(1));
        }

    }
}

reduce:

package com.jee.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;


//reduce接受map任务处理好以后的数据 再对其进行处理

//Reduce的四个参数 :  前面两个是map任务传递给reduce任务的数据的格式  后面两个是reduce任务给MapReduce框架的key-value格式
public class WcReduce extends Reducer {

    private IntWritable total = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        //由于我们模拟的是统计单词的jar  map任务就是把数据拆分成一个个的  格式,reduce任务就是对map任务处理后的数据在进行合并

        int sum = 0;

        //key代表我们map任务中统计的每个单词  values是一个迭代器
        for(IntWritable I : values){
            //累加
            sum += I.get();
        }

        //包装结果 并输出
        total.set(sum);
        context.write(key,total);

    }
}

driver:

package com.jee.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WcDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        //1.获取一个Job实例
        Job job = Job.getInstance(new Configuration());

        //2.设置我们的类路径
        job.setJarByClass(WcDriver.class);

        //3.设置Mapper和Reduce
        job.setMapperClass(WcMapper.class);
        job.setReducerClass(WcReduce.class);

        //4.设置Mapper和Reduce的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setMapOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //5.设置输入输出数据
        //args[0/1] 表示这个函数的参数
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //6.提交我们的Job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

这样我们自定义的wordcount就写完了 我们可以将它打包成jar包 然后上传到我们的集群中 然后使用 hadoop jar 1.jar(jar包名) com.jee.wordcount.WcDriver(driver类的全名) /1.txt /test/output/output1 就可以运行我们自己写的jar包了

编写MapReduce中的wordcount的jar包和实现实体类在Hadoop中的序列化_第1张图片
然后查看一下结果

编写MapReduce中的wordcount的jar包和实现实体类在Hadoop中的序列化_第2张图片

下面来实现一个类的在Hadoop中的序列化 在Java中 类实现序列化是实现Serializable接口 , 而想还Hadoop中序列化一个类 需要实现Writable接口 并实现其方法 (这里是一个很简单的案例 我们要从一个文件中计算出 它的序号和总共使用的流量大小) 文件分多行 序号可能有重复 流量大小是每一行倒数第二的数值加上倒数第三个的数值

序列化的类

package com.jee.flow;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

//实现Writable接口 就可以实现一个类在Hadoop中的序列化
public class FlowBean implements Writable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    @Override
    public String toString() {
        return "FlowBean{" +
                "upFlow=" + upFlow +
                ", downFlow=" + downFlow +
                ", sumFlow=" + sumFlow +
                '}';
    }

    public void set(long upFlow,long downFlow){
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public FlowBean(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = sumFlow;
    }

    public FlowBean() {
    }

    //序列化方法
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);
    }

    //反序列化方法
    // !!!! 注意  我们序列化的顺序和反序列化的顺序一定要相同 不然数据不匹配!!
    public void readFields(DataInput dataInput) throws IOException {
        upFlow = dataInput.readLong();
        downFlow = dataInput.readLong();
        sumFlow = dataInput.readLong();
    }
}

Mapper类

package com.jee.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper {

	//序号
    private Text t = new Text();
    //传递给reduce任务的自定义类
    private FlowBean bean = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        String line = value.toString();

		//每一行不同数据之间用一个\t 制表符分隔
        String[] items = line.split("\t");

        t.set(items[1]);
        bean.set(Long.parseLong(items[items.length-3]),Long.parseLong(items[items.length-2]));

        context.write(t,bean);
    }
}

Reducer类

package com.jee.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer {


    private FlowBean r = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        long upFlow = 0;
        long downFlow = 0;
        for(FlowBean flowBean : values){
             upFlow += flowBean.getUpFlow();
             downFlow += flowBean.getDownFlow();
        }
        r.set(upFlow,downFlow);
        context.write(key,r);
    }
}

Driver类

package com.jee.flow;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        //1.获取job实例
        Job job = Job.getInstance(new Configuration());

        //2.设置类路劲
        job.setJarByClass(FlowDriver.class);

        //3.设置Mapper和Reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //4.设置输入输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //5.设置输入输出路径
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        //6.提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0: 1);
    }
}

你可能感兴趣的:(编写MapReduce中的wordcount的jar包和实现实体类在Hadoop中的序列化)