没有任何引用指向的一个对象或者多个对象(循环引用)
C语言申请内存:malloc free
C++: new delete
内存泄漏
->内存泄漏过多,申请不到内存–>OOM
内存溢出引用计数(ReferenceCount)
缺点:不能解决环形垃圾,三个全是垃圾
A指向B,B指向C,C指向A,按照定义来说,这三个都不能算垃圾,可是这哥三手拉手是一团垃圾,这种情况下,通过RC是找不到这种垃圾的。
标记压缩(mark compact) -既不浪费内存也不产生碎片,得一边清一边压缩。 没有碎片,效率偏低(两遍扫描,指针需要调整)
年轻代装的是刚刚new出来的对象,特别顽固的老家伙,比如说垃圾回收一次,你还没被回收掉,年龄+1,由垃圾回收一次,还没被回收掉,年龄+1,…当一定的年龄后,会进入老年代
在年轻代分为三个区域:eden,假如有10个对象,9个是垃圾,只有1个不是垃圾,那么就没必要在伊甸区找来找去,直接把有用的那一个拷贝到幸存一区,接下来把伊甸区整个清掉。
下一个周期来了,又来了很多对象,那么伊甸区的幸存者扔到幸存二区,幸存一区如果还幸存的话,就也扔到幸存二区,然后把伊甸区和幸存一区一块清了;
再下一个周期来了,又来了很多对象,那么伊甸区的幸存者扔到幸存一区,幸存二区如果还幸存的话,就也扔到幸存一区,然后把伊甸区和幸存二区一块清了;
老年代很长时间回收一次,到了一定比例会触发回收,具体视垃圾回收器来定。
专业名词说明:YGC
、MinorGC
:年轻代回收
FGC
:全量回收,年轻代、老年代一起回收
1. 部分垃圾回收器使用的模型
除Epsilon ZGC Shenandoah之外的GC都是使用逻辑分代模型
G1是逻辑分代,物理不分代
除此之外不仅逻辑分代,而且物理分代
2. 新生代 + 老年代 + 永久代(1.7)Perm Generation/ 元数据区(1.8) Metaspace
3. 新生代 = Eden + 2个suvivor区
4. 老年代
5. GC Tuning (Generation)
6. 对象分配过程图
一个对象被new出来,首先会尝试在栈上分配,如果能够分配下,就在栈上分配。
在栈上分配的好处: pop并不需要GC介入,效率高。
如果栈上分配不下,看它个够不够大,大了(伊甸区装不下,大于它的剩余空间了,或者大于参数PreTenureSizeThreshold),直接扔到老年代,最后结果FGC或者majorGC,这个对象才会被清除掉。
如果这个对象不够大,尝试在线程本地。
在多个线程争抢伊甸区的资源的时候,会牵扯到一个线程同步的问题,因此当分配的线程数比较多的时候,这个线程同步消耗的资源会比较大,因此HotSpot
对它做了一个优化,在伊甸区里面,为每一个线程都单独分配了一小块区域叫TLAB
,那么某个线程在自己的线程里面分配对象的时候,优先往自己的一小块TLAB
分配,就不需要与其他线程争抢伊甸区的其他大块空间,所以这个效率就比较高了。
线程本地分配TLAB
(Thread Local Allocation Buffer
),其实线程本地占用eden
,默认为1%,多线程的时候不用竞争eden
就可以申请空间,提高效率。
如果线程本地分满了,尝试在伊甸区大块的位置。
然后伊甸区经过回收,回收掉了无所谓,回收不完,就到suvivor1
,suvivor1
再回收,年龄够了(CMS默认是6岁,其他是15岁),直接扔到老年代,年龄不够复制到suvivor2
,suvivor2
再回收,年龄够了,直接老年代,年龄不够复制到suvivor1
,就这样循环往复…
7. 动态年龄:(不重要)
动态年龄
8. 分配担保:(不重要)
YGC期间 survivor区空间不够了 空间担保直接进入老年代
参考
10种垃圾回收器
JDK1.8默认PS(arallel Scaveng)
+PO(Parallel Old)
简称UserParallelGC
Serial序列的,JVM规范对其的阐述:
a stop-the-world,copying collector which uses a single GC thread. STW:工作线程全停止
Serial Old,Old区单线程,JVM规范对其的阐述:
a stop-the-world,mark-sweep-compact collector that uses a single GC thread.
特点:单线程、STW
优点:单CPU效率最高
缺点:内存太大的话STW的时间过长
应用场景:虚拟机是Client模式的默认垃圾回收器
因为垃圾回收器的发展是随着内存越来越大的过程而推进的。
你家的房子太大了,而且只有老妈一个人扫,用单线程的太慢了,于是产生了多线程的垃圾回收器。相当于老妈,爷爷,奶奶都来打扫了。不过依然会面临STW。
Parallel Scavenge,JVM规范对其的阐述:
a stop-the-world,copying collector which uses multiple GC threads.
Parallel Old,JVM规范对其的阐述
a compacting collector that uses multiple GC threads.
特点:多线程、STW
优点:内存适当大的情况下,回收效率高
缺点:内存太大的话STW的时间过长
虽然多线程的垃圾收集,在多核的情况下会比单核的效率会高,但是一旦你家房子有天安门广场那么大的时候,即使你全家人来打扫也得半天,依然会面临STW,空间只要够大,人再多也没用,为了不忍受STW长时间的痛苦,于是引入了CMS,不过还是会有STW,不过STW会很短了。
ParNew,JVM规范对其的阐述:
concurrent mark sweep
a mostly concurrent,low-pause collector.(STW时间短)
4 个阶段
initial mark 初始标记
(第一步找到根)会有短暂的STW
concurrent mark 并发标记
(我一边做事丢垃圾,老爸老妈一边帮我清理)(工作线程和垃圾回收线程并发)
有种特殊情况,以下面的代码为例:
Object o = new Object();
Object o1 = o;
//...
Object o2 = o;
在第一行和第二行都执行完后,在3的执行过程中,如果o和o1那根线断了,此时o2还没有指向那个对象,因为工作线程和垃圾回收线程并发,此时垃圾回收器来了,把这块内存区域回收了,于是就会发生误删行为,为了防止错标误删,所以在并发清理前就诞生了第三步:重新标记。
remark 重新标记
(防止上述错标的情况,为什么会发生错标,因为是并发才会错标,因此这个阶段也必须是STW,也是短暂的STW)
重新标记的时候是怎么找到那些误标和漏标的?
CMS,G1以及ZGC也好都是怎么样用最快效率的方式,同时标记的时候能够找到那些误标和漏标的。
三色标记算法,也叫做三色扫描算法,是CMS和G1都采用的算法,但是CMS在三色标记完成后会Incremental Update,而G1是SATB
三色标记法
concurrent sweep 并发清理
CMS设计缺陷:
memory fragmentation
-XX:CMSFullGCsBeforeCompaction
floating garbage(浮动垃圾)
浮动垃圾,并发清理的过程也会产生新的垃圾,因为CMS采用mark sweep,内存会碎片化,由于碎片化会越来越严重,于是会用单线程的Serial Old来清理老年代(碎片化越来越严重的时候老妈居然一个人在打扫天安门广场)所以一旦CMS卡顿会非常严重。
G1是逻辑分代,物理不分代。
G1把内存分成一个个Region(区块)
,每个分区都可能是Eden区
也可能是Survivor区
,也可能是Old区
,非常大的块可以连起来叫做Humongosus区
(巨型区),这样做有个好处就是,回收的时候,就不用把整个大块区域全部回收,采用部分回收的方式
首先分析下之前的垃圾收集:
Serial GC
Parallel GC
PN + CMS
操作必须扫描整个老年代,不适合大内存,年轻代和老年代都是独立的内存块,大小必须提前确定。
下面是Oracle对G1的描述:
G1的特点:
,但是在同一时刻只能属于某个代。年轻代、幸存区、老年代这些概念还存在,成为逻辑上的概念,这样方便复用之间分代框架的逻辑。在物理上不需要连续,则带来了额外的好处——有的分区内垃圾对象特别多,有的分区内垃圾对象很少,G1会优先回收垃圾对象特别多的分区,这样可以花费较少的时间来回收这些分区的垃圾,这也就是G1名字的由来,即优先收集垃圾最多的分区。
新生代其实并不是适用于这种算法的,依然是新生代满了的时候,对整个新生代进行回收——整个新生代中的对象,要么被回收、要么晋升,至于新生代也采取分区机制的原因,则是因为这样跟老年代的策略统一,方便调整代的大小。
G1还是一种带压缩的收集器,在回收老年代的分区时,是将存活的对象从一个分区拷贝到另一个可用分区,这个拷贝的过程就实现了局部的压缩。每个分区的大小从1M到32M不等,但是都是2的幂次方。
1.8默认的垃圾回收:PS + ParallelOld
-XX:+UseSerialGC = Serial New (DefNew) + Serial Old
-XX:+UseParNewGC = ParNew + SerialOld
-XX:+UseConc(urrent)MarkSweepGC = ParNew + CMS + Serial Old
-XX:+UseParallelGC = Parallel Scavenge + Parallel Old (1.8默认) 【PS + SerialOld】
-XX:+UseParallelOldGC = Parallel Scavenge + Parallel Old
-XX:+UseG1GC = G1
Linux中没找到默认GC的查看方法,而windows中会打印UseParallelGC
Linux下1.8版本默认的垃圾回收器到底是什么?
JVM的命令行参数参考:https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
HotSpot参数分类
标准: - 开头,所有的HotSpot都支持
非标准:-X 开头,特定版本HotSpot支持特定命令
不稳定:-XX 开头,下个版本可能取消
java -version
java -X
java -XX:+PrintFlagsWithComments //只有debug版本能用
试验用程序:
import java.util.List;
import java.util.LinkedList;
public class HelloGC {
public static void main(String[] args) {
System.out.println("HelloGC!");
List list = new LinkedList();
for(;;) {
byte[] b = new byte[1024*1024];
list.add(b);
}
}
}
1. 区分概念:内存泄漏memory leak,内存溢出out of memory
2. java -XX:+PrintCommandLineFlags HelloGC
3. java -Xmn10M -Xms40M -Xmx60M -XX:+PrintCommandLineFlags -XX:+PrintGC HelloGC
PrintGCDetails PrintGCTimeStamps PrintGCCauses
4. java -XX:+UseConcMarkSweepGC -XX:+PrintCommandLineFlags HelloGC
5. java -XX:+PrintFlagsInitial 默认参数值
6. java -XX:+PrintFlagsFinal 最终参数值
7. java -XX:+PrintFlagsFinal | grep xxx 找到对应的参数
8. java -XX:+PrintFlagsFinal -version |grep GC
9. java -XX:+PrintFlagsFinal -version | wc -l
共728个参数
## 四、PS GC日志详解
每种垃圾回收器的日志格式是不同的!
PS日志格式
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XuYbizjH-1590054990517)(\asserts\GC日志详解.png)]
heap dump部分:
```java
eden space 5632K, 94% used [0x00000000ff980000,0x00000000ffeb3e28,0x00000000fff00000)
后面的内存地址指的是,起始地址,使用空间结束地址,整体空间结束地址
total = eden + 1个survivor
吞吐量:用户代码时间 /(用户代码执行时间 + 垃圾回收时间)
响应时间:STW越短,响应时间越好
所谓调优,首先确定,追求啥?吞吐量优先,还是响应时间优先?还是在满足一定的响应时间的情况下,要求达到多大的吞吐量…
问题:
科学计算,吞吐量。数据挖掘,thrput。吞吐量优先的一般:(PS + PO)
响应时间:网站 GUI API (1.8 G1)
调优,从业务场景开始,没有业务场景的调优都是耍流氓
无监控(压力测试,能看到结果),不调优
步骤:
案例1:垂直电商,最高每日百万订单,处理订单系统需要什么样的服务器配置?
这个问题比较业余,因为很多不同的服务器配置都能支撑(1.5G 16G)
1小时360000集中时间段, 100个订单/秒,(找一小时内的高峰期,1000订单/秒)
经验值,
非要计算:一个订单产生需要多少内存?512K * 1000 500M内存
专业一点儿问法:要求响应时间100ms
压测!
案例2:12306遭遇春节大规模抢票应该如何支撑?
12306应该是中国并发量最大的秒杀网站:
号称并发量100W最高
CDN -> LVS -> NGINX -> 业务系统 -> 每台机器1W并发(10K问题) 100台机器
普通电商订单 -> 下单 ->订单系统(IO)减库存 ->等待用户付款
12306的一种可能的模型: 下单 -> 减库存 和 订单(redis kafka) 同时异步进行 ->等付款
减库存最后还会把压力压到一台服务器
可以做分布式本地库存 + 单独服务器做库存均衡
大流量的处理方法:分而治之
怎么得到一个事务会消耗多少内存?
弄台机器,看能承受多少TPS?是不是达到目标?扩容或调优,让它达到
用压测来确定
测试代码:
package com.mashibing.jvm.gc;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
* 从数据库中读取信用数据,套用模型,并把结果进行记录和传输
*/
public class T15_FullGC_Problem01 {
private static class CardInfo {
BigDecimal price = new BigDecimal(0.0);
String name = "张三";
int age = 5;
Date birthdate = new Date();
public void m() {}
}
private static ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(50,
new ThreadPoolExecutor.DiscardOldestPolicy());
public static void main(String[] args) throws Exception {
executor.setMaximumPoolSize(50);
for (;;){
modelFit();
Thread.sleep(100);
}
}
private static void modelFit(){
List<CardInfo> taskList = getAllCardInfo();
taskList.forEach(info -> {
// do something
executor.scheduleWithFixedDelay(() -> {
//do sth with info
info.m();
}, 2, 3, TimeUnit.SECONDS);
});
}
private static List<CardInfo> getAllCardInfo(){
List<CardInfo> taskList = new ArrayList<>();
for (int i = 0; i < 100; i++) {
CardInfo ci = new CardInfo();
taskList.add(ci);
}
return taskList;
}
}
java -Xms200M -Xmx200M -XX:+PrintGC com.mashibing.jvm.gc.T15_FullGC_Problem01
一般是运维团队首先受到报警信息(CPU Memory)
top命令观察到问题:内存不断增长 CPU占用率居高不下
top -Hp 观察进程中的线程,哪个线程CPU和内存占比高
jps定位具体java进程
jstack 定位线程状况,重点关注:WAITING BLOCKED
eg.
waiting on <0x0000000088ca3310> (a java.lang.Object)
假如有一个进程中100个线程,很多线程都在waiting on ,一定要找到是哪个线程持有这把锁
怎么找?搜索jstack dump的信息,找 ,看哪个线程持有这把锁RUNNABLE
作业:1:写一个死锁程序,用jstack观察 2 :写一个程序,一个线程持有锁不释放,其他线程等待
为什么阿里规范里规定,线程的名称(尤其是线程池)都要写有意义的名称
怎么样自定义线程池里的线程名称?(自定义ThreadFactory)
jinfo pid
jstat -gc 动态观察gc情况 / 阅读GC日志发现频繁GC / arthas观察 / jconsole/jvisualVM/ Jprofiler(最好用)
jstat -gc 4655 500 : 每个500个毫秒打印GC的情况
如果面试官问你是怎么定位OOM问题的?如果你回答用图形界面(错误)
1:已经上线的系统不用图形界面用什么?(cmdline arthas)
2:图形界面到底用在什么地方?测试!测试的时候进行监控!(压测观察)
jmap - histo 4655 | head -20,查找有多少对象产生
jmap -dump:format=b,file=xxx pid :
线上系统,内存特别大,jmap执行期间会对进程产生很大影响,甚至卡顿(电商不适合)
1:设定了参数HeapDump,OOM的时候会自动产生堆转储文件(不是很专业,因为多有监控,内存增长就会报警)
2:很多服务器备份(高可用),停掉这台服务器对其他服务器不影响
3:在线定位(一般小点儿公司用不到)
4:在测试环境中压测(产生类似内存增长问题,在堆还不是很大的时候进行转储)
java -Xms20M -Xmx20M -XX:+UseParallelGC -XX:+HeapDumpOnOutOfMemoryError com.mashibing.jvm.gc.T15_FullGC_Problem01
使用MAT / jhat /jvisualvm 进行dump文件分析
https://www.cnblogs.com/baihuitestsoftware/articles/6406271.html
jhat -J-mx512M xxx.dump
http://192.168.17.11:7000
拉到最后:找到对应链接
可以使用OQL查找特定问题对象
找到代码的问题
程序启动加入参数:
java -Djava.rmi.server.hostname=192.168.17.11 -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=11111 -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false XXX
如果遭遇 Local host name unknown:XXX的错误,修改/etc/hosts文件,把XXX加入进去
192.168.17.11 basic localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
关闭linux防火墙(实战中应该打开对应端口)
service iptables stop chkconfig iptables off #永久关闭
windows上打开 jconsole远程连接 192.168.17.11:11111
https://www.cnblogs.com/liugh/p/7620336.html (简单做法)
Memory Fragmentation
-XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction 默认为0 指的是经过多少次FGC才进行压缩
Floating Garbage
Concurrent Mode Failure
产生:if the concurrent collector is unable to finish reclaiming the unreachable objects before the tenured generation fills up, or if an allocation cannot be satisfiedwith the available free space blocks in the tenured generation, then theapplication is paused and the collection is completed with all the applicationthreads stopped解决方案:降低触发CMS的阈值
PromotionFailed
解决方案类似,保持老年代有足够的空间
–XX:CMSInitiatingOccupancyFraction 92% 可以降低这个值,让CMS保持老年代足够的空间
执行命令:java -Xms20M -Xmx20M -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC com.mashibing.jvm.gc.T15_FullGC_Problem01
[GC (Allocation Failure) [ParNew: 6144K->640K(6144K), 0.0265885 secs] 6585K->2770K(19840K), 0.0268035 secs] [Times: user=0.02 sys=0.00, real=0.02 secs]
ParNew:年轻代收集器
6144->640:收集前后的对比
(6144):整个年轻代容量
6585 -> 2770:整个堆的情况
(19840):整个堆大小
[GC (CMS Initial Mark) [1 CMS-initial-mark: 8511K(13696K)] 9866K(19840K), 0.0040321 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]
//8511 (13696) : 老年代使用(最大)
//9866 (19840) : 整个堆使用(最大)
[CMS-concurrent-mark-start]
[CMS-concurrent-mark: 0.018/0.018 secs] [Times: user=0.01 sys=0.00, real=0.02 secs]
//这里的时间意义不大,因为是并发执行
[CMS-concurrent-preclean-start]
[CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
//标记Card为Dirty,也称为Card Marking
[GC (CMS Final Remark) [YG occupancy: 1597 K (6144 K)][Rescan (parallel) , 0.0008396 secs][weak refs processing, 0.0000138 secs][class unloading, 0.0005404 secs][scrub symbol table, 0.0006169 secs][scrub string table, 0.0004903 secs][1 CMS-remark: 8511K(13696K)] 10108K(19840K), 0.0039567 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
//STW阶段,YG occupancy:年轻代占用及容量
//[Rescan (parallel):STW下的存活对象标记
//weak refs processing: 弱引用处理
//class unloading: 卸载用不到的class
//scrub symbol(string) table:
//cleaning up symbol and string tables which hold class-level metadata and
//internalized string respectively
//CMS-remark: 8511K(13696K): 阶段过后的老年代占用及容量
//10108K(19840K): 阶段过后的堆占用及容量
[CMS-concurrent-sweep-start]
[CMS-concurrent-sweep: 0.005/0.005 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
//标记已经完成,进行并发清理
[CMS-concurrent-reset-start]
[CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
//重置内部结构,为下次GC做准备
[GC pause (G1 Evacuation Pause) (young) (initial-mark), 0.0015790 secs]
//young -> 年轻代 Evacuation-> 复制存活对象
//initial-mark 混合回收的阶段,这里是YGC混合老年代回收
[Parallel Time: 1.5 ms, GC Workers: 1] //一个GC线程
[GC Worker Start (ms): 92635.7]
[Ext Root Scanning (ms): 1.1]
[Update RS (ms): 0.0]
[Processed Buffers: 1]
[Scan RS (ms): 0.0]
[Code Root Scanning (ms): 0.0]
[Object Copy (ms): 0.1]
[Termination (ms): 0.0]
[Termination Attempts: 1]
[GC Worker Other (ms): 0.0]
[GC Worker Total (ms): 1.2]
[GC Worker End (ms): 92636.9]
[Code Root Fixup: 0.0 ms]
[Code Root Purge: 0.0 ms]
[Clear CT: 0.0 ms]
[Other: 0.1 ms]
[Choose CSet: 0.0 ms]
[Ref Proc: 0.0 ms]
[Ref Enq: 0.0 ms]
[Redirty Cards: 0.0 ms]
[Humongous Register: 0.0 ms]
[Humongous Reclaim: 0.0 ms]
[Free CSet: 0.0 ms]
[Eden: 0.0B(1024.0K)->0.0B(1024.0K) Survivors: 0.0B->0.0B Heap: 18.8M(20.0M)->18.8M(20.0M)]
[Times: user=0.00 sys=0.00, real=0.00 secs]
//以下是混合回收其他阶段
[GC concurrent-root-region-scan-start]
[GC concurrent-root-region-scan-end, 0.0000078 secs]
[GC concurrent-mark-start]
//无法evacuation,进行FGC
[Full GC (Allocation Failure) 18M->18M(20M), 0.0719656 secs]
[Eden: 0.0B(1024.0K)->0.0B(1024.0K) Survivors: 0.0B->0.0B Heap: 18.8M(20.0M)->18.8M(20.0M)], [Metaspace: 38
76K->3876K(1056768K)] [Times: user=0.07 sys=0.00, real=0.07 secs]
OOM产生的原因多种多样,有些程序未必产生OOM,不断FGC(CPU飙高,但内存回收特别少) (上面案例)
硬件升级系统反而卡顿的问题(见上)
线程池不当运用产生OOM问题(见上)
不断的往List里加对象(实在太LOW)
smile jira问题
实际系统不断重启
解决问题 加内存 + 更换垃圾回收器 G1
真正问题在哪儿?不知道
tomcat http-header-size过大问题(Hector)
lambda表达式导致方法区溢出问题(MethodArea / Perm Metaspace)
LambdaGC.java -XX:MaxMetaspaceSize=9M -XX:+PrintGCDetails
"C:\Program Files\Java\jdk1.8.0_181\bin\java.exe" -XX:MaxMetaspaceSize=9M -XX:+PrintGCDetails "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2019.1\lib\idea_rt.jar=49316:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2019.1\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_181\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_181\jre\lib\rt.jar;C:\work\ijprojects\JVM\out\production\JVM;C:\work\ijprojects\ObjectSize\out\artifacts\ObjectSize_jar\ObjectSize.jar" com.mashibing.jvm.gc.LambdaGC
[GC (Metadata GC Threshold) [PSYoungGen: 11341K->1880K(38400K)] 11341K->1888K(125952K), 0.0022190 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (Metadata GC Threshold) [PSYoungGen: 1880K->0K(38400K)] [ParOldGen: 8K->1777K(35328K)] 1888K->1777K(73728K), [Metaspace: 8164K->8164K(1056768K)], 0.0100681 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]
[GC (Last ditch collection) [PSYoungGen: 0K->0K(38400K)] 1777K->1777K(73728K), 0.0005698 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (Last ditch collection) [PSYoungGen: 0K->0K(38400K)] [ParOldGen: 1777K->1629K(67584K)] 1777K->1629K(105984K), [Metaspace: 8164K->8156K(1056768K)], 0.0124299 secs] [Times: user=0.06 sys=0.00, real=0.01 secs]
java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sun.instrument.InstrumentationImpl.loadClassAndStartAgent(InstrumentationImpl.java:388)
at sun.instrument.InstrumentationImpl.loadClassAndCallAgentmain(InstrumentationImpl.java:411)
Caused by: java.lang.OutOfMemoryError: Compressed class space
at sun.misc.Unsafe.defineClass(Native Method)
at sun.reflect.ClassDefiner.defineClass(ClassDefiner.java:63)
at sun.reflect.MethodAccessorGenerator$1.run(MethodAccessorGenerator.java:399)
at sun.reflect.MethodAccessorGenerator$1.run(MethodAccessorGenerator.java:394)
at java.security.AccessController.doPrivileged(Native Method)
at sun.reflect.MethodAccessorGenerator.generate(MethodAccessorGenerator.java:393)
at sun.reflect.MethodAccessorGenerator.generateSerializationConstructor(MethodAccessorGenerator.java:112)
at sun.reflect.ReflectionFactory.generateConstructor(ReflectionFactory.java:398)
at sun.reflect.ReflectionFactory.newConstructorForSerialization(ReflectionFactory.java:360)
at java.io.ObjectStreamClass.getSerializableConstructor(ObjectStreamClass.java:1574)
at java.io.ObjectStreamClass.access$1500(ObjectStreamClass.java:79)
at java.io.ObjectStreamClass$3.run(ObjectStreamClass.java:519)
at java.io.ObjectStreamClass$3.run(ObjectStreamClass.java:494)
at java.security.AccessController.doPrivileged(Native Method)
at java.io.ObjectStreamClass.<init>(ObjectStreamClass.java:494)
at java.io.ObjectStreamClass.lookup(ObjectStreamClass.java:391)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1134)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at javax.management.remote.rmi.RMIConnectorServer.encodeJRMPStub(RMIConnectorServer.java:727)
at javax.management.remote.rmi.RMIConnectorServer.encodeStub(RMIConnectorServer.java:719)
at javax.management.remote.rmi.RMIConnectorServer.encodeStubInAddress(RMIConnectorServer.java:690)
at javax.management.remote.rmi.RMIConnectorServer.start(RMIConnectorServer.java:439)
at sun.management.jmxremote.ConnectorBootstrap.startLocalConnectorServer(ConnectorBootstrap.java:550)
at sun.management.Agent.startLocalManagementAgent(Agent.java:137)
直接内存溢出问题(少见)
《深入理解Java虚拟机》P59,使用Unsafe分配直接内存,或者使用NIO的问题
栈溢出问题
-Xss设定太小
比较一下这两段程序的异同,分析哪一个是更优的写法:
Object o = null;
for(int i=0; i<100; i++) {
o = new Object();
//业务处理
}
for(int i=0; i<100; i++) {
Object o = new Object();
}
重写finalize引发频繁GC
小米云,HBase同步系统,系统通过nginx访问超时报警,最后排查,C++程序员重写finalize引发频繁GC问题
为什么C++程序员会重写finalize?(new delete)
finalize耗时比较长(200ms)
如果有一个系统,内存一直消耗不超过10%,但是观察GC日志,发现FGC总是频繁产生,会是什么引起的?
System.gc() (这个比较Low)
Distuptor有个可以设置链的长度,如果过大,然后对象大,消费完不主动释放,会溢出 (来自 死物风情)
用jvm都会溢出,mycat用崩过,1.6.5某个临时版本解析sql子查询算法有问题,9个exists的联合sql就导致生成几百万的对象(来自 死物风情)
new 大量线程,会产生 native thread OOM,(low)应该用线程池,
解决方案:减少堆空间(太TMlow了),预留更多内存产生native thread
JVM内存占物理内存比例 50% - 80%
-XX:MaxTenuringThreshold控制的是什么?
A: 对象升入老年代的年龄 B: 老年代触发FGC时的内存垃圾比例
生产环境中,倾向于将最大堆内存和最小堆内存设置为:(为什么?)
A: 相同 B:不同
JDK1.8默认的垃圾回收器是:
A: ParNew + CMS B: G1
C: PS + ParallelOld D: 以上都不是
什么是响应时间优先?
什么是吞吐量优先?
ParNew和PS的区别是什么?
ParNew和ParallelOld的区别是什么?(年代不同,算法不同)
长时间计算的场景应该选择:A:停顿时间 B: 吞吐量
大规模电商网站应该选择:A:停顿时间 B: 吞吐量
HotSpot的垃圾收集器最常用有哪些?
常见的HotSpot垃圾收集器组合有哪些?
JDK1.7 1.8 1.9的默认垃圾回收器是什么?如何查看?
所谓调优,到底是在调什么?
如果采用PS + ParrallelOld组合,怎么做才能让系统基本不产生FGC
如果采用ParNew + CMS组合,怎样做才能够让系统基本不产生FGC
1.加大JVM内存
2.加大Young的比例
3.提高Y-O的年龄
4.提高S区比例
5.避免代码内存泄漏
G1是否分代?G1垃圾回收器会产生FGC吗?
如果G1产生FGC,你应该做什么?
问:生产环境中能够随随便便的dump吗?
小堆影响不大,大堆会有服务暂停或卡顿(加live可以缓解),dump前会有FGC
问:常见的OOM问题有哪些?
栈 堆 MethodArea 直接内存
. 降低MixedGC触发的阈值,让MixedGC提早发生(默认是45%)
问:生产环境中能够随随便便的dump吗?
小堆影响不大,大堆会有服务暂停或卡顿(加live可以缓解),dump前会有FGC
问:常见的OOM问题有哪些?
栈 堆 MethodArea 直接内存