新增的Java MapReduce API
Hadoop的版本0.20.0包含有一个新的 Java MapReduce API,有时也称为"上下文对象"(context object),旨在使API在今后更容易扩展。新的API 在类型上不兼容先前的API,所以,需要重写以前的应用程序才能使新的API发挥作用。
新增的API 和旧的API 之间,有下面几个明显的区别。
新的API 倾向于使用虚类,而不是接口,因为这更容易扩展。例如,可以无需修改类的实现而在虚类中添加一个方法(即用默认的实现)。在新的API 中, mapper 和reducer现在都是虚类。
新的API 放在org.apache.hadoop.mapreduce 包(和子包)中。之前版本的API 依旧放在org.apache.hadoop.mapred中。
新的API充分使用上下文对象,使用户代码能与MapReduce系统通信。例如,MapContext 基本具备了JobConf、OutputCollector和Reporter的功能。
新的API 同时支持"推"(push)和"拉"(pull)式的迭代。这两类API,均可以将键/值对记录推给mapper,但除此之外,新的API 也允许把记录从map()方法中拉出。对reducer来说是一样的。"拉"式处理数据的好处是可以实现数据的批量处理,而非逐条记录地处理。
新增的API实现了配置的统一。旧API 通过一个特殊的JobConf 对象配置作业,该对象是Hadoop配置对象的一个扩展 (用于配置守护进程,详情请参见第130页的"API配置"小节)。在新的API 中,我们丢弃这种区分,所有作业的配置均通过Configuration 来完成。
新API中作业控制由Job类实现,而非JobClient类,新API中删除了JobClient类。
输出文件的命名方式稍有不同。map的输出文件名为part-m-nnnnn,而reduce的输出为part-r-nnnnn(其中nnnnn表示分块序号,为整数,且从0开始算)。
例2-6 显示了使用新API 重写的MaxTemperature应用。不同之处已加粗显示。
将旧API写的Mapper和Reducer类转换为新API时,记住将map()和reduce()的签名转换为新形式。如果只是将类的继承修改为对新的Mapper和Reducer类的继承,编译的时候也不会报错或显示警告信息,因为新的Mapper和Reducer类同样也提供了等价的map()和reduce()函数。但是,自己写的mapper或reducer代码是不会被调用的,这会导致难以诊断的错误。
例2-6. 用新上下文对象MapReduce API重写的MaxTemperature应用
public class NewMaxTemperature {
static class NewMaxTemperatureMapper
extends Mapper {
private static final int MISSING = 9999;
public void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;
if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));
} else {
airTemperature = Integer.parseInt(line.substring(87, 92));
}
String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));
}
}
}
static class NewMaxTemperatureReducer
extends Reducer {
public void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {
int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());
}
context.write(key, new IntWritable(maxValue));
}
}
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: NewMaxTemperature
原来MapReduce代码可在《Hadoop权威指南》内找到,大家可进行对比。
又一例子:Hadoop in Action中第四章:
package com;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class tt extends Configured implements Tool {
public static class MapClass extends Mapper {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
//split的作用是将该字符串里面的变量赋值给citation这个字符串数组当中。
String[] citation = value.toString().split(",");
//使用新的API取代了collect相关的API,将map中的key和value进行了互换。
context.write(new Text(citation[1]), new Text(citation[0]));
}
}
public static class Reduce extends Reducer { //前两个参数设置是输入参数,后两个参数是输出参数。
public void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {
String csv ="";
//Text类型是类似于String类型的文本格式,但是在处理编码上还是和String有差别,与内存序列化有关,是hadoop经过封装之后的新类。
for (Text val:values) {
if (csv.length() > 0) csv += ",";
csv += val.toString();
}
context.write(key, new Text(csv));
}
}
public int run(String[] args) throws Exception { //由hadoop本身调用该程序
Configuration conf = getConf();
Job job = new Job(conf, "tt"); //利用job取代了jobclient
job.setJarByClass(tt.class);
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); //此处如果不进行设置,系统会抛出异常,还要记住新旧API不能混用
System.exit(job.waitForCompletion(true)?0:1);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new tt(), args); //调用新的类的方法免除配置的相关琐碎的细节
System.exit(res);
}
}