第一,大量级可推荐内容,即推荐的SKU
个性化推荐的本质是提升信息筛选的效率,如果信息量级小个性化意义不大(比如一个视频网站每天只能产生10条新闻,再怎么个性化也只是在这10条内循环,对用户来说没有差别),个性化推荐的SKU至少是千级或万级,而且理论上来说,优质内容越多、类别分布越广泛,个性化推荐效果越好。
这些内容可以是抓取的无版权内容、UGC、版权合作PGC等多种来源,由于来源不同,样式和质量可能千差万别,因此通常需要做内容抓取、清洗、转码等以保证样式统一,还可能需要用户管理体系、反垃圾等配合搭建内容生态。个性化推荐系统各家可能是相近的,推荐的内容不同就产生了不同的用户场景和产品壁垒。内容,本质是一种资源。
第二,内容的标准化处理
第一步内容已备齐,接下来是把内容处理成机器和算法可理解的特征(比如分类、标签、产品库等)。具体怎么处理要看业务需求,需要的技术:如果是文章、新闻、微博等,就需要自然语言处理;如果是图片、视频,就会涉及到图像识别和处理;如果是歌曲、电影、商品等,机器直接理解内容来打标签难度比较大,最好能建立一套用户打标签的机制,或者通过人工填写或抓取的方式打标签。
但不管什么内容,首先都要建立一套自己的标签体系,这是定义标准的过程,比如要给电影打标签,先定义一下有多少种电影,通常标签体我们系会是一个树状或网状结构;其次可能都要收集大量训练样本,比如要实现给图片打标签,首先需要人工标注上万张图片,供机器学习,标注的样本还要不断更新,这里面涉及到大量重复繁琐的人力劳动。所以圈内人经常开玩笑说,“人工智能”重点其实是“人工”。
第三,用户行为日志收集、传输、挖掘、存储
推荐的基础是数据,前两步挖掘了内容数据,第三步就是挖掘用户行为生成用户画像。
采集:通常采用前端埋点的方式,上报用户的点击、分享、收藏等等行为。日志采集是数据挖掘非常重要的环节,如果采集又缺失或错误(很可能的事),那么后续不管怎么做都没有效果,同时前端的改动也可能影响日志,如果不有效协同,会对后端有很大影响。
传输:用于用户兴趣的收集往往越快越好,这样用户的某个操作就能快速反馈到下一步推荐中,所以就需要日志的稳定传输和更新,但由于成本考虑,用户profile不是都能实时更新的,有的可能延时1小时,有的可能1天1更、一周1更,甚至更久。
挖掘:这一过程是将用户数据计算、挖掘处理成我们想要的特征(俗称“用户画像”,业内通常叫用户profile),用户挖掘通常要与算法结合,而不能凭空挖特征,没有算法应用再牛逼的用户画像也是没有价值的。
存储:用户的兴趣在一段时间内不会变化太大,因此可以用用户长期留下的行为来积累用户画像,并需要把这些profile存起来。如果用户量很大,那么需要的存储资源也是海量的,那就需要一个能对大量数据进行分布式存储的数据库,并且需要可靠和廉价,例如hdfs(Hadoop Distributed File System),如果想要实时计算用户兴趣,就需要可快速存取的数据库比如redis,所以购买服务器也是微博、今日头条等公司很大的开支。
当然用户的兴趣不是一成不变的,因此用户兴趣需要随时间“衰减”,设置合理的衰减系数,对用户profile也很重要。
除此之外,用户行为挖掘还有一个历史性难题——用户冷启动,这个话题我们需要单起一篇文章探讨。
第四,排序算法
前三步有了内容和用户的数据,第四步可以用算法对两者做match了。个性化推荐本质是在做Top N ranking,通常包括“召回”和“排序”两个模块。举个例子,如果我有10万条信息,但是用户每天可能只能看10条,那么推荐哪10条给用户呢?我可以把这10万条从1-10万排个序,这样用户不管想看多少条,我只要从我排的10000个序里从前往后挑就可以了,这个过程就是“排序”;但这种排法在实时索引中计算量太大,可能会带来较高延时,那么我们先用某种相对简单的方法从这10万中选相对靠谱的1000,再对这1000排序,10万选10000的过程就是“召回”。
算法方面门道很多,之后会单起一篇文章,详细介绍目前推荐系统常用的、最有效的算法。此外,不管什么算法都需要使用内容推荐之后的“动态指标”(比如ctr),但没推荐之前我们如何获得这个动态指标呢?这里涉及到内容的冷启动问题,也会之后单独讨论。
第五,推荐搜索引擎
怎么还有搜索引擎?是的,你没看错。实际上个性化推荐和搜索是非常相似的领域,两者都是信息筛选方式,也都是在做一种“相关性”rank,目标函数都是很接近的(点击率)。只不过搜索更注重用户当下搜索关键词的相关性,而推荐更注重内容与用户profile的相关性。用户每一次浏览都是一次实时请求,因此需要实时计算当下最符合用户兴趣的内容,这一步就是在线搜索引擎承担的。但由于性能要求,在线索引这步不宜做太耗时的计算,一般是排序算法计算了初始结果,在线引擎做算法调度和归一化排序,此外在线索引还会承担接收请求、输出数据、曝光点击排重等服务,通常还会承担业务和产品需求的二次排序(比如插入广告、打散同类型内容等)。
第六,ABtest系统
ABtest系统虽不是个性化推荐系统的必需模块,但没有ABtest的推荐系统一定是个假的推荐系统!推荐系统的优化实际上就是一个y=f(x),y是目标函数,首先目标函数一定要十分明确,且是可量化的指标;f(x)是选用的算法、算法特征参数、算法调度等等组成的,其实业界通过有效的算法一直是那么几个,算法原理也就是那么几个,但如何结合自己的产品场景选择特征、参数,就成了个性化推荐精准度的关键因素。如果有ABtest系统,那么我们可以尝试带入多种参数、特征,ABtest实验得出最佳的y,这样推荐系统就可以不断迭代、优化。
当然,算法的优化不是改改参数这么简单,做推荐的人需要要对数据十分敏感,并能将复杂问题抽象到可量化的指标上,再结合ABtest实验快速迭代。我总结的算法优化的过程是:“数据分析发现问题、合理假设、设计实验、实现、数据分析、得出结论或新的假设”,不断循环反复。其中改改参数只是“实现”那一步,也是最简单的一步,而往往多数人只重视“实现”,却对分析和假设的过程重视程度太低,这样优化的效果是没有保障的,还有些产品、技术人员会陷入盲目ABtest的误区,漫无目的的尝试,经常做ABtest发现AB组数据没有任何差别,甚至产生了ABtest效率低的想法。这些分析思路便拉开了算法工程师之间的差距。
内容列表 :
01推荐系统概念和应用场景介绍推荐引擎的产生背景、概念、特点及应用场景。
02推荐引擎的算法原理 介绍常用的推荐引擎算法,以及每种算法的原理、优缺点。
03推荐引擎产品RecEng介绍 介绍推荐引擎产品RecEng的特点、能力、数据模型。
04推荐引擎RecEng基本操作演示演示推荐引擎RecEng的基本操作。
05实践:搭建电商推荐系统介绍如何使用推荐引擎产品RecEng搭建一个推荐系统,支撑企业的推荐业务需求。
06实验手册:搭建电商推荐系统详细实验操作手册,带你一步步完成电商推荐系统的搭建。