- e_ophtha_MA眼底数据集—根据微血管瘤标注Mask绘制Contour轮廓图
curemoon
眼底医学图像处理:微血管瘤Microaneurysm检测分割采用数据集e_ophtha中的e_ophtha_MA,此数据集可从互联网下载实现根据微血管瘤标注Mask,在原图绘制轮廓图,以直观了解微血管瘤,以便检测分割微血管瘤1.可展示数据集中原图和绘制轮廓图的并列拼接图2.可保存Mask,原图,根据标注绘制轮廓图的眼底图的拼接图1.原图和绘制轮廓图的并列拼接图2.保存Mask,原图,根据标注绘制轮
- 【深度学习】: 脑部MRI图像分割
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例4:脑部MRI图像分割相关知识点:语义分割、医学图像处理(skimage,medpy)、可视化(matplotlib)1任务
- U-Net的原理
来自宇宙的曹先生
深度学习
U-Net是一种专为医学图像分割而设计的卷积神经网络(CNN)架构。它于2015年由OlafRonneberger、PhilippFischer和ThomasBrox提出,特别适用于需要精确定位的应用场景,比如生物医学图像处理。以下是U-Net的主要原理和组成部分的详细解释:U-Net的结构对称的U形结构:U-Net的主要特点是其U型对称结构,由一个“编码器”(收缩路径)和一个“解码器”(扩张路径
- 基于深度学习的细胞感染性识别与判定
OverlordDuke
深度学习神经网络深度学习人工智能
基于深度学习的细胞感染性识别与判定基于深度学习的细胞感染性识别与判定引言项目背景项目意义项目实施数据采集与预处理模型选择与训练模型评估与优化结果与展望结论基于深度学习的细胞感染性识别与判定引言随着深度学习技术的不断发展,其在医学图像处理领域的应用逐渐成为研究的热点。本文将探讨基于深度学习的细胞感染性识别与判定,该项目在生物医学领域具有重要的意义。项目背景细胞感染性识别与判定是生物医学领域的一项关键
- U-Net——第一课
湘溶溶
分割深度学习人工智能深度学习学习python
一.论文研究背景、成果及意义二、unet论文结构三、算法架构一.论文研究背景、成果及意义医学图像分割是医学图像处理与分析领域的复杂而关键的步骤,目的是将医学图像中具有某些特殊含义的部分分割出来,并提取相关特征,为临床诊疗和病理学研究提供可靠的依据,辅助医生作出更为准确的诊断。①处理对象:各种不同成像机理的医学影像,主要有X-射线成像(X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波
- 毕业论文idea
pythonSuperman
毕业设计
三大模块分级、分类、系统多看医学图像处理毕业论文。SwinTransformer的模型表现不如MobileViT使用高像素的数据集在云服务器上训练时,如果您发现SwinTransformer的模型表现不如MobileViT,这可能由几个因素导致:模型架构与数据匹配度:SwinTransformer虽然设计用于处理复杂和大型图像数据,但其表现还受到数据特性的影响。例如,如果数据集中的图像特征更适合于
- 计算机视觉:从数据量、数据质量、数据复杂度、数据隐私介绍图片数据处理难度
幻风_huanfeng
计算机视觉计算机视觉人工智能图像处理算法机器学习
本文重点计算机视觉是一门研究如何让计算机处理和理解图像的学科,其应用范围非常广泛,包括图像识别、目标检测、人脸识别、车辆识别、医学图像处理等。在计算机视觉领域中,图片数据的处理是非常重要的一环,但也是非常具有挑战性的。本文将从数据量、数据质量、数据复杂度等方面,详细介绍图片数据处理的难点。一、数据量在计算机视觉领域中,图片数据的数量通常非常庞大,这就给数据的处理带来了很大的挑战。一方面,大量的数据
- WebGL技术在医学图像处理的应用
super_Dev_OP
信息可视化
WebGL技术在医学图像处理方面具有广泛的应用,提供了实时、交互式的图像渲染和分析工具。以下是WebGL在医学图像处理中的一些应用场景,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。1.三维图像重建:WebGL可以用于呈现和交互式处理医学三维图像,如CT扫描、MRI和超声等。医生和研究人员可以通过Web浏览器实时查看和操控复杂的三维图像。2.虚拟解剖学:利用W
- 【论文阅读】MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
AI浩
人工智能论文阅读
文章目录摘要创新点总结实现效果总结摘要链接:https://arxiv.org/abs/2312.08866医学图像分割是医学图像处理和计算机视觉领域的关键挑战之一。由于病变区域或器官的大小和形状各异,有效地捕捉多尺度信息和建立像素间的长距离依赖性至关重要。本文提出了一种基于高效轴向注意力的多尺度交叉轴注意(MCA)方法来解决这些问题。MCA通过计算两个并行轴向注意力之间的双向交叉注意力,以更好地
- Python修改图片尺寸、裁剪图片、拼接图片
波比波
计算机视觉深度学习python计算机视觉图像处理
在YOLO算法中对输入的图片有尺寸大小要求,如果图片太大网络就提取不到特征,无法检测图片中的物体。在进行医学图像处理的时候,一般医学影像拍出来的图片分辨率很大,细胞非常小,所以不能将图片直接拿去检测,需要做一些处理:以我现有的图片为例,图像尺寸为10150×15050,可以切割为很多50×50的小方图,但是我觉得50×50尺寸较小,影响网络检测速度,所以先将图片尺寸通过加白边的方式扩展到10500
- VTK-等值面提取
@左左@右右
VTK图像处理计算机视觉人工智能VTK
等值面等值面(线)提取是一种常用的可视化技术,常应用于医学、地质、气象等领域。例如,在医学图像处理中,由于CT、MRI等图像分辨率越来越高,虽然体绘制技术可以清晰地对数据内部结构进行可视化,但是其计算量和效率却制约了其使用。此时可通过等值面提取技术,仅提取感兴趣的一个或者几个组织轮廓,并生成网格模型以供后续的处理和研究。根据数据类型的不同,VTK中提供了多个等值面提取类,其类图如图所示VTK中的等
- 会议剪影 | 思腾合力受邀出席首届CCF数字医学学术年会
Jericho2022
云计算搜索引擎
首届CCF数字医学学术年会(CCFDigitalMedicineSymposium,DMS)于2023年12月15日-17日在苏州CCF业务总部召开。这次会议的成功召开,标志着数字医学领域进入了一个新的时代,计算机技术和人工智能在医学领域的应用和发展得到了更广泛的关注和重视。本次会议由中国计算机学会主办,CCF数字医学分会、复旦大学和上海市医学图像处理与计算机辅助手术重点实验室联合承办,中国科学院
- Opencv实验合集——实验四:图片融合
我药打十个
Opencv系列opencv计算机视觉人工智能
1.概念图像融合是将两个或多个图像结合在一起,创建一个新的图像的过程。这个过程的目标通常是通过合并图像的信息来获得比单个图像更全面、更有信息量的结果。图像融合可以在许多领域中应用,包括计算机视觉、遥感、医学图像处理等。融合的方法有很多:加法融合(AdditiveFusion):将每个图像的对应像素相加。这种方法通常用于合并具有相似亮度的图像,例如红外图像和可见光图像。权重融合(WeightedFu
- 基于Swin_Transformer的图像超分辨率系统
xuehai996
transformer深度学习人工智能
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义随着科技的不断发展,图像超分辨率技术在计算机视觉领域中变得越来越重要。图像超分辨率是指通过使用计算机算法将低分辨率图像转换为高分辨率图像的过程。这项技术在许多领域都有广泛的应用,包括医学图像处理、监控摄像头、卫星图像处理等。在过去的几十年里,图像超
- 分水岭算法的应用
此间不留白
上海交通大学医学图像处理数学形态学一个应用是分水岭算法,为了便于理解,可以将图像的灰度空间与地球表面的地形高度相类比,据此,发明了应用于图像领域的分水岭算法。测地线距离假设,如下图所示的一个岛屿,要从点走到点,虚线所表示的是最短的直线距离,也就是欧式距离,考虑到现实情况,不能穿过水面到达目标地点,所以,能够从起点到终点的实际通行路线中最短的距离成为测地线距离。通过以上分析,给出测地线距离的定义:给
- 会议邀请 | 思腾合力邀您共赴首届CCF数字医学学术年会
Jericho2022
搜索引擎
首届CCF数字医学学术年会(CCFDigitalMedicineSymposium,DMS)将于2023年12月15日-17日在苏州CCF业务总部召开,由中国计算机学会主办,CCF数字医学分会、复旦大学和上海市医学图像处理与计算机辅助手术重点实验室联合承办,中国科学院苏州生物医学工程技术研究所协办。思腾合力作为行业领先的人工智能基础架构解决方案商受邀参加本次盛会。CCF数字医学分会是CCF旗下首个
- python医学图像处理之基于vtk的三维点云表面重建
Cherry330
医学图像处理python图像处理开发语言计算机视觉3d
hello,小伙伴们,好久不见~马上就要到中秋了,不知道大家现在有没有进入学习状态呢?今天呢,要教大家做一个基于vtk的三维点云表面重建。我们通过每个点的坐标值,重建出这个模型。这个不仅可以用于医学图像相关的模型重建,也同样适用于其他三维表面重建哦~那么。话不多说,让我们来实操一下吧!首先,我们需要下载以下三个库。如果缺少某个库的小伙伴请通过“pipinstallXXX”进行下载哦~importn
- python医学图像处理之vtk生成固定方向的圆柱体并保存
Cherry330
医学图像处理numpypython计算机视觉3d图像处理
hello,各位小伙伴,好久不见~假期结束,又该回到我们日常的代码生活中去啦!这几天呢,我遇到一个问题,那就是怎么生成某个固定方向的圆柱体并保存呢?我们都知道啊,vtk直接生成的圆柱体是固定沿y轴生成的。但是如果我们想要生成并保存一个沿着固定方向的圆柱体该怎么办呢?网上有很多小伙伴给出的结果是生成很多个直线最终构成一个沿固定方向的圆柱,但是这种方法,在保存模型或者需要生成多个圆柱体时就变得非常麻烦
- python医学图像处理之三维点云模型特征提取
Cherry330
医学图像处理python图像处理开发语言3d
hello,小伙伴们,今天我们来聊一聊三维模型特征提取。在我们日常对模型进行一些操作(例如,配准、寻找特定点等),我们总是会遇到一个问题,就是如何从三维模型中提取其特征点。解决这个问题的方法有很多,例如,下采样,iss,甚至是深度学习等方法。今天,我会教大家几种基础的方法来进行特征点的提取。先清楚咱们今天的主角——示例的点云模型吧。大家可以猜猜这是什么,嘿嘿~图1示例点云模型首先是超级经典的ISS
- Python-医学图像处理之三维重建(进行切片级重建)
Cherry330
医学图像处理图像处理python3d
对于从事医学图像处理的小伙伴而言,医学图像三维重建并不是一个陌生的东西啦~例如,在对图像分割结果进行展示或者验证时,我们常常通过对分割结果进行三维可视化的方式进行展示和说明。那废话不多说,今天就来教大家如何根据自己的分割结果进行三维重建。这里呢,我用现在正在做的韧带分割进行说明。首先,通过深度学习或者传统方法对医学图像进行分割,得到二值化的分割结果(如图1所示)。将分割结果放置在一个文件夹里。图1
- python医学图像处理之标签制作(json批量转png)
Cherry330
医学图像处理json图像处理深度学习databasepython人工智能计算机视觉
无论是做医学图像分割的小伙伴,还是做其他语义分割的小伙伴,一定都和我一样遇到过这个问题——用labelme制作了标签之后,我们的标签如何转化为图片呢?其实,我们可以通过如下命令进行转化:labelme_json_to_dataset-ofilesfiles\label.json但是,这样每次只能转一张图片,并不是很方便。接下来,就教大家如何批量地将json转换为png。现在,让我们来看一下数据。在
- python医学图像处理之读取DICOM文件信息
Cherry330
医学图像处理图像处理人工智能计算机视觉python
相信很多和我一样做医学图像处理的小伙伴都接触过DICOM格式的数据吧。由于不同的DICOM文件在存储和传输时存在差异,所以处理起来总是让我们非常头疼。接下来,我就教大家如何读取DICOM文件中的文本信息。那么,在DICOM文件中,比较常用的信息究竟都有哪些呢?这里大致给大家列举一下:PatientName(患者姓名):患者的姓名。PatientID(患者ID):患者的唯一标识符。PatientBi
- JAVA 图形图像处理系统设计与开发(论文+源码)_Nueve
质文学术工作室
JAVAjava图像处理计算机视觉pythonphpc++c语言
摘要随着计算机技术的迅速发展,数字图像处理技术在医学领域的研究和应用日益深入和广泛。现代医学已越来越离不开医学图像处理技术。医学图像处理技术在临床诊断、教学科研等方面发挥了重要的作用。计算机图像处理技术与影像技术的结合从根本上改变了医务人员进行诊断的传统方式。充分地利用这些技术可以提高诊断的正确性和准确性,提高诊断效率,降低医疗成本,可以更加充分地发挥各种医疗设备的功能。而且,随着数字化、智能化进
- DICOM LUT
EverestVIP
dicom
转自:DICOM医学图像显示算法改进与实现——LUT引言随着Ul(超声成像)、CT(计算机断层成像)、MRI(核磁共振成像)、CR(计算机X线成像)、电子内窥镜、盯(正电子发射断层成像)和MI(分子影像)等医学影像设备不断涌现,利用计算机对医学影像设备采集到的图像进行后处理的医学图像处理与分析技术也越来越成为放射科医生和临床医生进行疾病诊断的重要辅助手段。在医学图像的处理过程中医生经常需要频繁地变
- 基于BP神经网络的图像跟踪与细胞追踪识别
前端设计家
神经网络人工智能深度学习Matlab
基于BP神经网络的图像跟踪与细胞追踪识别图像跟踪和细胞追踪识别是计算机视觉和生物医学图像处理领域的重要问题。本文将介绍如何使用基于BP神经网络的方法来实现图像跟踪和细胞追踪识别,并提供相应的MATLAB源代码。图像跟踪图像跟踪是指在一个连续的图像序列中准确地定位和跟踪特定目标的位置。基于BP神经网络的图像跟踪方法可以通过训练网络来学习目标的运动模式,并根据学习到的模式来预测目标在下一帧图像中的位置
- 【C++】pow函数实现的伽马变换详解和示例
木彳
CC++日常记录c++opencv计算机视觉人工智能
本文通过原理和示例对伽马变换进行详解,并通过改变变换系数展示不同的效果,以帮助大家理解和使用。原理伽马变换是一种用于图像增强的技术,它可以用来提高或降低图像的对比度,常用于医学图像处理和计算机视觉等领域。伽马变换是通过将图像像素值映射到一个新的值,以达到对比度增强的效果。伽马变换步骤具体可分为:(1)图像转为灰度或自身便为灰度图像。(2)像素值归一化到0-1之间(3)计算像素值的gam此幂的值,使
- 人工智能详细笔记:深度学习解决图像分割问题(FCN Unet Deeplab)
北岛寒沫
人工智能人工智能深度学习计算机视觉
文章目录图像分割问题图像数据集和图像标注工具全卷积网络(FCN)语义分割问题U-net神经网络Deeplab神经网络图像分割问题图像分割问题概述:图像分割是指将一幅数字图像分成若干个部分或者对象的过程。该任务的目标是将图像中的每个像素分配给其所属的对象或者部分,因此它通常被视为一种像素级别的图像分析。图像分割的应用场景:图像分割有很多应用,比如医学图像处理、自动驾驶、机器人技术、人机交互、视频监控
- 医学影像处理系统源码(PACS)
源码技术栈
PACS医学影像系统源码医学图像医学影像PACS医院PACS照片DRCT
通用医学图像处理平台覆盖全模态、多维度临床应用,助力提供医学图像分析的全景高清视角,赋能临床精准诊断。一、PACS覆盖CT、MR、MI等多模态影像及心血管、肿瘤、神经等多临床场景,助力医生精准高效诊断。二、临床应用1.基础应用(1).仿真内窥镜支持提取血管、气管以及结肠三维结构,可通过内腔漫游视图观察管腔内部结构,清晰显示管腔内病变大小、位置等形态学特征。(2).骨三维结构提供肋骨分割、肋骨标记、
- 三维医学图像处理系统(PACS)源码
淘源码d
图像处理人工智能三维处理3D重建源码
三维医学图像处理系统(PACS)源码系统概述:它集影像存储服务器、影像诊断工作站及RIS报告系统于一身,主要有图像处理模块、影像数据管理模块、RIS报告模块、光盘存档模块、DICOM通讯模块、胶片打印输出等模块组成,具有完善的影像数据库管理功能,强大的图像后处理功能,提高了临床诊断准确率。文末获取联系系统特点:覆盖登记、分诊、记费、报告生成和分发等内容,与RIS有机结合;采用DICOM和非DICO
- 论文阅读——Segment Medical Image Using U-Net Combining Recurrent Residuals and Attention
黄小米吖
CV神经网络python算法网络
SegmentMedicalImageUsingU-NetCombiningRecurrentResidualsandAttention结合循环残差连接和注意力机制的UNet网络用于医学图像分割
FromMICAD2020Abstract医学图像分割可为临床诊断提供可靠的依据。医学图像分割技术的发展不仅影响着其他医学图像处理技术,比如3D重建等,还在生物医学图像分析中占据极其重要的地位。随着深度学
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象