线性规划之单纯型算法

问题定义:

问题定义比较复杂,建议看《算法导论》里的线性规划一章。单纯型算法用于求解如下这类问题:


例:

求等式的最小值: -2X1– 3X2

且自变量满足如下约束:

X1 + X2 = 7

X1 – 2X2<= 4

X1>= 0


将约束等式转换为标准型:

标准型的条件:

1. 求目标函数的最大值

2. 每个自变量都大于等于零(非负约束)

3.约束不等式,只有最小化约束


转换结果如下:

max 2X1 – 3X2 + 3X3

并且满足:

X1 + X2- X3 <= 7

-X1 – X2+ X3 <= -7

X1 – 2X2+ 2X3 <= 4

X1, X2, X3 >= 0

将标准型转换成松弛型:

z = 2X1– 3X2 + 3X3

X4 = 7- X1 - X2 + X3

X5 = -7+ X1 + X2 - X3

X6 = 4- X1 + 2X2 - 2X3


则基本变量为的下标集合 B = {4, 5, 6}

非基本变量的下标集合 N = {1, 2, 3}

C = [ 2 3 3 ]T

b = [ 7 -7 4 ]T

A

1

1

-1

-1

-1

1

1

-2

2

v = 0


具体实现时,将 A, b, C, v都存储在一个数组中

data

0v

2c

-3c

3c

7b

1A

1A

-1A

-7b

-1A

-1A

1A

4b

1A

-2A

2A



代码如下:

/* *Copyright(c) Computer Science Department of XiaMen University * *Authored by laimingxing on: 2012年 03月 03日 星期六 00:14:35 CST * * @desc: * * @history */ #include #include #include #include using namespace std; const double unbounded = 10000000; const int MAX = 10; int n; double data[MAX][MAX];//A,b,c,v都存储在data里面 void PIVOT( vector &N, vector &B, int l ,int e); void simple( vector &N, vector&B); int main(int argc, char* argv[]) { //将标准行转换为松弛型 //未知数个数 const int nX = 3; //不等式个数 ,第一行为目标函数 const int nEquation = 4; int i = 0, j = 0, k = 0; vectorB,N; double arr[ nEquation + 1 ][nX + 1 ] = { { 2, -3, 3,0},{1, 1, -1, 7}, {-1, -1, 1, -7}, {1, -2, 2, 4} }; //N for( k = 1; k <= nX; k++) N.push_back( k); //B for( ; k < nX + nEquation; k++) B.push_back( k); n = nX + nEquation ; memset( data, 0, sizeof(int) * n * n); //c for( i = 1; i < n; i++) if( i <= nX) data[0][i] = arr[0][i - 1]; else data[0][i] = 0; //A for( i = nX + 1; i < n; i++) { for( j = 1; j <= nX ; j++) { data[i][j] = arr[ i - nX][j -1]; //cout << data[i][j] << "\t"; } } //b for( i = nX + 1; i < n; i++) data[i][0] = arr[ i - nX][nX]; simple( N,B); return 0; } void simple( vector &N, vector&B) { for( int j = 1; j <= n; j++) { if(data[0][j] <= 0) continue; double minBound = unbounded; int minIndex = 0; for( vector::iterator i = B.begin(); i != B.end(); i++) { if( data[*i][j] <= 0)continue; double temp = data[*i][0] / data[*i][j]; if( temp < minBound) { minBound = temp; minIndex = *i; } } if( minBound > unbounded - 1) cout <<"Unbounded" << endl; else PIVOT( N, B, minIndex, j); } for( int i = 1 ; i <= n ; i++) if( find(B.begin(), B.end(),i) != B.end() ) cout << "x"<

你可能感兴趣的:(线性规划之单纯型算法)