HashMap容量设置

1、当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在 数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。
如果这个元素所在的位置上已经存放有其他元素了,那么在同一个位子上的元素将以链表的 形式存放,新加入的放在链头,比如a->b->c,新加入的d放到a的位置前面,最先加入的放在链尾,
也就是c。最后变成d->a->b->c,从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素, 然后通过key的equals方法在对应位置的链表中找到需要的元素。

2、
在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,
所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置 的时候,
马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。
但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,

Java代码

staticintindexFor(inth,intlength){ 
returnh&(length-1); 
}

首先算得key得hashcode值,然后跟数组的长度-1做一次“与”运算(&)。看上去很简单,其实比较有玄机。比如数组的长度是2的4次方, 那么hashcode就会和2的4次方-1做“与”运算。
很多人都有这个疑问,为什么hashmap的数组初始化大小都是2的次方大小时,hashmap 的效率最高,我以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。
 看下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。
两组的hashcode均为8和9,但是很明显,当它们和1110“与”的 时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,
那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么 最后一位永远是0,
而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是 这种情况中,数组可以使用的位置比数组长度小了很多,
这意味着进一步增加了碰撞的几率,减慢了查询的效率!所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,
相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。说到这里,我们再回头看一下hashmap中默认的数组大小是多少,查看源代码可以得知是16,为什么是16,而不是15,
也不是20呢,看到上面 annegu的解释之后我们就清楚了吧,显然是因为16是2的整数次幂的原因,在小数据量的情况下16比15和20更能减少key之间的碰撞,而加快查询 的效率。

3、

当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行 扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了, 而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的 默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那 么预设元素的个数能够有效的提高hashmap的性能。

比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。
 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。

你可能感兴趣的:(数据结构)