- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- ISP Pipeline(4): Anti Aliasing Noise Filter 抗锯齿与降噪滤波器
andwhataboutit?
接口隔离原则
上一篇文章讲的是:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客视频:(5)AntiAliasingNoiseFilter|ImageSignalProcessingPipelineTutorialSeries源码:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客Anti-AliasingNois
- 学 Simulink:实时系统与嵌入式部署类场景ROS + Simulink 联合仿真的多传感器信号融合与滤波模块
amy_mhd
simulinkmatlab
目录ROS+Simulink联合仿真的多传感器信号融合与滤波模块场景目标✅准备工作软件安装:硬件准备(可选):步骤详解第一步:创建Simulink模型并配置ROS支持启用ROS工具箱支持:第二步:添加ROS输入接口(接收传感器数据)使用Subscribe模块接收ROSTopic数据:第三步:设计滤波与信号预处理模块方法一:IMU数据滤波(加速度+角速度)方法二:卡尔曼滤波器(KalmanFilte
- 在Simulink中进行基于蚁群算法优化滤波器带宽的智能控制系统仿真
amy_mhd
算法前端数据库simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义问题与目标示例:定义优化目标步骤2:准备数据集或模拟环境示例:生成测试信号步骤3:设计并实现蚁群算法示例:简单的蚁群算法实现步骤4:创建Simulink模型步骤5:添加滤波器模块示例:添加FIR滤波器步骤6:集成蚁群算法结果示例:MATLABFunctionBlock代码步骤7:设置仿真参数步骤8:运行仿真并分析结果四、总结蚁群算法(Ant
- [信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析
庭师_Official
信号与系统信号与系统信号处理
前言阅读本文需要阅读一些前置知识[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。[信号与系统]有关滤波器的一些知识背景[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换[信号与系统]关于双线性变换IIR滤波器的数学表达式IIR(InfiniteImpulseResponse)滤波器的输出信号y[n]y[n]y[n]可以用输入信号x[n]x[n]x[n]和滤波器系数表示
- 使用Simulink结合MATLAB进行基于强化学习控制下的动态滤波器参数调节系统的仿真
amy_mhd
matlab开发语言
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:准备强化学习环境步骤3:训练强化学习代理步骤4:创建Simulink模型步骤5:添加信号源步骤6:合并信号步骤7:导入强化学习代理步骤8:设计滤波器步骤9:可视化结果步骤10:连接各模块步骤11:设置仿真参数步骤12:运行仿真并分析结果四、总结在现代信号处理领域,动态调整滤波器参数以适应不断变化的环境条件是
- Python-OpenCV-图像滤波
卡朗
PythonOpenCVpythonopencv计算机视觉人工智能图像处理
图像除了包含对应灰度或彩色信息,还包含一些无用的噪点等造成的不均匀扭曲。滤波可以清除这些噪点,平滑图像细节,使得图像更加清晰。均值滤波均值滤波器的原理是将每个像素的灰度值替换为其周围像素灰度值的平均值。其核心思想是去除图像中的高频噪声,同时保留图像中的低频信息。在进行均值滤波操作时,需要定义一个滤波模板(卷积核),通常是一个矩形区域,其大小由模板的宽度和高度决定。在模板中的每一个像素,都会与该像素
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 基于matlab的语音信号去噪
文章目录前言1.获取音频1.1读取原始音频1.2读取代码展示1.3截取音频1.4可视化处理1.4.1原始信号时域图1.4.2原始信号频谱图2.加噪处理2.1高斯白噪声2.2高通滤波器2.2.1filterDesigner2.2.2信号分析器2.3噪音叠加处理2.4可视化处理2.4.1加噪时域图2.4.2加噪频域图3.滤波降噪3.1技术指标3.2设计巴特沃斯低通滤波器滤波3.3滤波结果可视化3.3.
- C#Halcon从零开发_Day12_轮廓边缘处理
仙贝大饼
C#联合Halcon从零编程人工智能计算机视觉Halcon机器学习c#轮廓处理
引言之前是依靠卡尺来获取直线,也可以通过xld轮廓来截取直线段dev_get_window(WindowHandle)read_image(Image,'C:/Users/10314/Desktop/pic1.png')一、边缘提取*Edges:提取的亚像素边缘轮廓(XLD格式),包含边缘点的坐标和方向信息*'canny'边缘检测滤波器的类型,决定边缘检测的灵敏度和方向*'lanser2':基于二
- STM32之定时器之输入捕获
绿竹-大地
stm32单片机嵌入式硬件
从上图可以看到输入捕获的配置流程,第一步就是配置GPIO口,以及复用。然后就是配置滤波器,这里的滤波器并不会改变信号频率,而是以非常高速的脉冲连续采样,当连续采样的电平都是一样的时候才会将信号发送给下面的电路。然后就是配置边沿检测,可以选择上升沿触发也可以选择下降沿触发。然后就是配置信号分路,是想要直连这一条路还是另外一条路。然后就是分频器的配置,对信号进行分频处理。最后就是CCR了,这里需要补充
- PLC(光分路器)技术以及制作工艺大全
亿源通科技
PLC分路器光纤通信光通信
PLC更广为人知的是在电子技术领域,它是可编程逻辑控制器(ProgrammableLogicController)的简称。在光通信技术领域,PLC是平面光路(PlanarLightwaveCircuit)的简称,它是基于集成光学技术制备的各种光波导结构,在技术上,可实现的功能性器件有方向耦合器DC、Y分支器、多模干涉耦合器MMI、阵列波导光栅AWG、光学梳状滤波器ITL、马赫-增德尔MZ电光调制器
- 超高速10G采集卡
FPGA_ADDA
fpga开发高速采集卡10G采集卡
超高速10G采集卡是一款高端14位数据采集平台,旨在满足最具挑战性的测量环境。特性:单通道和双通道操作单通道10GSPS或双通道5GSPS7GByte/s持续数据传输速率开放式FPGA支持实时DSP脉冲检测固件选项波形平均固件选项特征单通道和双通道工作模式双通道5GSPS,单通道10GSPS采样率14位垂直分辨率DC耦合3GHz模拟带宽数字用户控制降噪滤波器可编程DC偏移内部和外部时钟参考内部和外
- 使用Simulink进行基于高通滤波器的设计与性能分析仿真实验
amy_mhd
simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:创建Simulink模型步骤3:添加信号源示例:添加信号源步骤4:添加加法器步骤5:设计高通滤波器示例:添加高通滤波器步骤6:可视化结果步骤7:连接各模块步骤8:设置仿真参数步骤9:运行仿真并分析结果四、进阶内容(可选)五、总结高通滤波器(High-passFilter,HPF)是一种允许高于某个截止频率的
- 使用Simulink进行基于雷达脉冲压缩技术和匹配滤波器的仿真实验
xiaoheshang_123
手把手教你学MATLAB专栏matlabsimulink
目录背景介绍所需工具和环境步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:创建Simulink模型步骤3:添加雷达发射信号源步骤4:配置天线阵列(可选)步骤5:设置目标模型步骤6:添加自由空间信道模型步骤7:配置匹配滤波器步骤8:可视化结果步骤9:连接各模块步骤10:设置仿真参数步骤11:运行仿真并分析结果总结雷达脉冲压缩技术是一种用于提高雷达分辨率和信噪比的关键技术。它通过发射宽脉冲信号并
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 当卷积作用于信号处理
思绪漂移
信号处理
当卷积作用于信号处理场景一:语音信号的信噪比提升智能耳机一般都有一个选项环境音量自适应,当在地铁上使用时,是否好奇它是如何在嘈杂环境中准确捕捉人声的?背后是一套实时卷积处理系统。通过持续分析环境噪声的频谱特征,系统动态生成具有特定频响特性的卷积核。当嘈杂环境的低频机械噪声和高频啸叫声被麦克风捕捉时,这些定制化的数字滤波器会像剪刀,剪除不同范围的频段,同时保留关键人声频段。在高端降噪耳机中,这种技术
- OpenCV-Python 图像平滑
2D卷积与一维信号一样,我们也可以对2D图像实施低通滤波(LPF),高通滤波(HPF)等。LPF帮助我们去除噪音,模糊图像。HPF帮助我们找到图像的边缘OpenCV提供的函数cv.filter2D()可以让我们对一幅图像进行卷积操作。下面我们将对一幅图像使用平均滤波器。下面是一个5x5的平均滤波器核:K=\frac{1}{25}\begin{bmatrix}1&1&1&1&1\1&1&1&1&1\
- OpenCV图像处理技术(Python)——图像金字塔
©FuXianjun.AllRightsReserved.一、理论基础图像金字塔是同一图像不同分辨率的子图集合,是通过对原图像不断地向下采样而产生的,即由高分变率的图像(大尺寸)产生低分辨率的近似图像(小尺寸)。·邻域滤波器:采用邻域平均技术求原始图像的近似图像。该滤波器能够产生平均金字塔。·高斯滤波器:采用高斯滤波器对原始图像进行滤波,得到高斯金字塔。这是OpenCV函数cv2.pyrDown(
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- PCM1808替代料GC1808 24位ADC 24位模数转换器芯片
深圳市集智创芯
GC1808是一款高性能、低成本立体声音频模数转换器。其集成了64倍过采样率Δ-Σ调制器、数字梳状滤波器、数字高通滤波器。GC1808支持主、从机和两种串行音频数据格式。GC1808支持掉电和时钟检测低功耗模式,温度支持-40℃到+85℃。GC1808芯片主要特点:24bitΔ-Σ立体声ADC+5.0V模拟电源(VA)+3.3V数字电源(VDD)单端电压输入:3Vp-p高性能:THD+N:-93d
- 【芯片设计- SoC 常用模块 9.1 -- PLL 介绍】
主公讲 ARM
#芯片设计RTL数字逻辑设计扫盲单片机嵌入式硬件PLL锁相环
文章目录OverviewPLL的功能PLL在SoC中的典型应用PLL的工作原理锁相环的基本结构鉴相器(PhaseDetector,PD)环路滤波器(LoopFilter)压控振荡器(VCO,Voltage-ControlledOscillator)反馈路径(一般包含分频器)锁相的过程是怎样的?常见类型的PLL什么是震荡(Oscillation)?什么是相位(Phase)?Overview在芯片So
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- 4)自适应滤波(一)[LMS算法]
咕噜咕噜day
语音信号处理自适应滤波器LMS与变种维纳滤波
目录一.LMS算法1.滤波器——改变信号频谱模拟滤波器:数字滤波器:2.自适应滤波器简介自适应滤波器:非自适应滤波器:自适应滤波器应用:自适应滤波场景:自适应滤波处理逻辑(处理非平稳信号):3.N阶线性系统:4.维纳滤波器(Wiener)基本推导:优缺点:5.基本LMS算法动机:标准LMS算法的执行流程:LMS算法的基本思想——梯度下降LMS算法的优缺点:LMS算法的改进思路:6.BlockLMS
- STM中CAN滤波器设置深度解析
硬核科技
软件开发软件linux嵌入式单片机CAN通信滤波器
在CAN通信系统中,如何高效接收和处理报文,是决定节点性能与响应速度的关键因素之一。尤其当总线挂载节点数量庞大、数据传输频繁时,若所有报文都需由CPU进行判断筛选,将带来巨大的系统负担,严重时甚至可能导致系统延迟或卡死。为缓解此问题,CAN控制器通常提供硬件滤波器功能,通过预设筛选机制,在接收到报文的第一时间就完成“要不要处理”的决策。一、CAN滤波器工作原理与作用CAN协议中,报文标识符(ID)
- OpenCV CUDA模块图像处理------双边滤波的GPU版本函数bilateralFilter()
村北头的码农
OpenCVopencv图像处理人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数在GPU上执行双边滤波操作,是一种非线性平滑滤波器,能够在保留边缘的同时去除噪声。函数原型voidcv::cuda::bilateralFilter(InputArraysrc,OutputArraydst,intkernel_size,floatsigma
- 数字滤波器应用介绍
闪闪发亮的小星星
数字信号处理与分析数字信号处理与分析2信号处理
此示例说明如何设计、分析数字过滤器并将其应用于数据。它将帮助您回答以下问题:如何补偿滤波器引入的延迟?如何避免使信号失真?如何从信号中删除不需要的内容?如何微分信号?以及积分信号文章目录补偿筛选引入的延迟补偿恒定滤波器延迟如FIR引起的消除方法,末尾添零补偿频率相关延迟如IIR引起的使用filtfilt从信号中去除不需要的频谱内容滤波并补偿总结参考补偿筛选引入的延迟数字滤波器会在信号中引入延迟,根
- 什么是多尺度分解
frostmelody
深度学习小知识点信号处理深度学习人工智能
1.什么是多尺度分解为什么要分解?直观地讲,信号或特征序列往往同时包含“低频信息”(整体趋势)和“高频信息”(细节或噪声)。多尺度分解的目的,就是把原始信号拆成若干“尺度”上的成分,分别表示不同频段(粗细程度)的信息。小波变换中的“近似”和“细节”每做一次小波变换,我们都通过一对滤波器(低通滤波器Low‐pass,和高通滤波器High‐pass)来把信号分成两部分:近似系数(Approximati
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">