海量数据处理之双层桶划分

双层桶划分

什么是双层桶
事实上,与其说双层桶划分是一种数据结构,不如说它是一种算法设计思想。面对一堆大量的数据我们无法处理的时候,我们可以将其分成一个个小的单元,然后根据一定的策略来处理这些小单元,从而达到目的。

适用范围     
第k大,中位数,不重复或重复的数字

基本原理及要点     
因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子,分治才是其根本(只是“只分不治”)。

扩展      
当有时候需要用一个小范围的数据来构造一个大数据,也是可以利用这种思想,相比之下不同的,只是其中的逆过程。

问题实例    
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。当然这个题也可以用我们前面讲过的BitMap方法解决,正所谓条条大道通罗马~~~

2).5亿个int找它们的中位数。

关于中位数:数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值(那么10G个数的中位数,就第5G大的数与第5G+1大的数的均值了)。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只需用计数排序落在这个区域中的那些数就可以了。

说明:整数范围是0 - 2^32 - 1,一共有4G种取值,映射到256M个区段,用一个64位无符号整数给每个相应区段记数,则每个区段有16(4G/256M = 16)种值,每16个值算一段, 0~15是第1段,16~31是第2段,……2^32-16 ~2^32-1是第256M段。一个64位无符号整数最大值是0~8G-1,这里先不考虑溢出的情况。总共占用内存256M×8B=2GB。这里可以用个循环来判断每个数所属的区域,如:

for(i=0;i++){if(i*16

从前到后对每一段的计数累加,当累加的和超过5G时停止,找出这个区段(即累加停止时达到的区段,也是中位数所在的区段)的数值范围,设为[a,a+15],同时记录累加到前一个区段的总数,设为m。然后,释放除这个区段占用的内存。

再读一遍10G个整数,把在[a,a+15]内的每个值计数,即有16个计数。

对新的计数依次累加,每次的和设为n,当m+n的值超过5G时停止,此时的这个计数所对应的数就是中位数。

3).现在有一个0-30000的随机数生成器。请根据这个随机数生成器,设计一个抽奖范围是0-350000彩票中奖号码列表,其中要包含20000个中奖号码。

这个题刚好和上面两个思想相反,一个0到3万的随机数生成器要生成一个0到35万的随机数。那么我们完全可以将0-35万的区间分成35/3=12个区间,然后每个区间的长度都小于等于3万,这样我们就可以用题目给的随机数生成器来生成了,然后再加上该区间的基数。那么要每个区间生成多少个随机数呢?计算公式就是:区间长度*随机数密度,在本题目中就是30000*(20000/350000)。最后要注意一点,该题目是有隐含条件的:彩票,这意味着你生成的随机数里面不能有重复,这也是我为什么用双层桶划分思想的另外一个原因。

你可能感兴趣的:(海量数据处理)